Fast QAP Solving by ACO with 2-opt Local Search on a GPU

被引:0
作者
Tsutsui, Shigeyoshi [1 ]
Fujimoto, Noriyuki [2 ]
机构
[1] Hannan Univ, Management & Informat Sci, Matsubara, Osaka 5808502, Japan
[2] Osaka Prefecture Univ, Grad Sch Sci, Osaka 5998531, Japan
来源
2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC) | 2011年
关键词
OPTIMIZATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a parallel ant colony optimization (ACO) for solving quadratic assignment problems (QAPs) on a graphics processing unit (GPU) by combining fast, 2-opt local search in compute unified device architecture (CUDA). In 2-opt for QAP, 2-opt moves can be divided into two groups based on computing cost. In one group, the computing cost is O(1) and in the other group, the computing cost is O(n). We compute these groups of 2-opt moves in parallel by assigning the computations to threads of CUDA. In this assignment, we propose an efficient method that can reduce disabling time in each thread of CUDA. The results show GPU computation with 2-opt produces a speedup of x24.6 on average, compared to computation with CPU.
引用
收藏
页码:812 / 819
页数:8
相关论文
共 22 条
[1]  
[Anonymous], IEEE C EV COMP CEC 1
[2]  
[Anonymous], 2009, QAPLIB QUADRATIC ASS
[3]  
Banzhaf W, 2009, GENET EVOL COMPUT, P229
[4]  
Clayton TF, 2008, GEN EV COMP C, P299
[5]  
Dorigo M., HDB METAHEURISTICS, P2
[6]  
Hongtao Bai, 2009, 2009 Fourth International Conference on Innovative Computing, Information and Control (ICICIC 2009), P801, DOI 10.1109/ICICIC.2009.255
[7]   GP on SPMD parallel graphics hardware for mega Bioinformatics data mining [J].
Langdon, W. B. ;
Harrison, A. P. .
SOFT COMPUTING, 2008, 12 (12) :1169-1183
[8]  
Langdon WB, 2008, LECT NOTES COMPUT SC, V4971, P73, DOI 10.1007/978-3-540-78671-9_7
[9]  
Luong T.V., 2010, P 12 ANN C GENETIC E, P1089, DOI DOI 10.1145/1830483.1830685
[10]  
Maitre O., 2009, P 11 ANN C GENETIC E, P1403