Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1

被引:231
作者
Makandar, R
Essig, JS
Schapaugh, MA
Trick, HN
Shah, J [1 ]
机构
[1] Kansas State Univ, Div Biol, Manhattan, KS 66506 USA
[2] Kansas State Univ, Dept Plant Pathol, Manhattan, KS 66506 USA
[3] Kansas State Univ, Mol Cellular & Dev Biol Program, Manhattan, KS 66506 USA
关键词
PR gene; scab; transgenic wheat;
D O I
10.1094/MPMI-19-0123
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fusarium bead blight (FHB) is a devastating disease of wheat and barley which causes extensive losses worldwide. Monogenic, gene-for-gene resistance to FHB has not been reported. The best source of resistance to FHB is a complex, quantitative trait derived from the wheat cv. Sumai 3. Here, we show that the Arabidopsis thaliana NPR1 gene (AtNPR1), which regulates the activation of systemic acquired resistance, when expressed in the FHB-susceptible wheat cv. Bobwhite, confers a heritable, type 11 resistance to FHB caused by Fusarium graminearum. The heightened FHB resistance in the transgenic AtNPR1-expressing wheat is associated with the faster activation or defense response when challenged by the fungus. PR1 expression is induced rapidly to a high level in the fungus-challenged spikes of the AtNPR1-expressing wheat. Furthermore, benzothiadiazole, a functional analog of salicylic acid, induced PR1 expression faster and to a higher level in the AtNPR1-expressing wheat than in the nontransgenic plants. We suggest that FHB resistance in the AtNPR1-expressing wheat is a result of these plants being more responsive to an endogenous activator of plant defense. Our results demonstrate that NPR1 is an effective candidate for controlling FHB.
引用
收藏
页码:123 / 129
页数:7
相关论文
共 43 条
[1]  
Altpeter F, 1996, PLANT CELL REP, V16, P12, DOI 10.1007/BF01275440
[2]   Development of a lesion-mimic phenotype in a transgenic wheat line overexpressing genes for pathogenesis-related (PR) proteins is dependent on salicylic acid concentration [J].
Anand, A ;
Schmelz, EA ;
Muthukrishnan, S .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2003, 16 (10) :916-925
[3]   Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum [J].
Anand, A ;
Zhou, T ;
Trick, HN ;
Gill, BS ;
Bockus, WW ;
Muthukrishnan, S .
JOURNAL OF EXPERIMENTAL BOTANY, 2003, 54 (384) :1101-1111
[4]   Management and resistance in wheat and barley to Fusarium head blight [J].
Bai, GH ;
Shaner, G .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 2004, 42 :135-161
[5]   Engineering pathogen resistance in crop plants [J].
Campbell, MA ;
Fitzgerald, HA ;
Ronald, PC .
TRANSGENIC RESEARCH, 2002, 11 (06) :599-613
[6]   Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance [J].
Cao, H ;
Li, X ;
Dong, XN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (11) :6531-6536
[7]   Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light [J].
Chern, M ;
Fitzgerald, HA ;
Canlas, PE ;
Navarre, DA ;
Ronald, PC .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2005, 18 (06) :511-520
[8]   Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis [J].
Chern, MS ;
Fitzgerald, HA ;
Yadav, RC ;
Canlas, PE ;
Dong, XN ;
Ronald, PC .
PLANT JOURNAL, 2001, 27 (02) :101-113
[9]  
CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1016/0003-2697(87)90021-2
[10]   Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants [J].
Christensen, AH ;
Quail, PH .
TRANSGENIC RESEARCH, 1996, 5 (03) :213-218