Integrated methylome and transcriptome analysis unravel the cold tolerance mechanism in winter rapeseed(Brassica napus L.)

被引:13
|
作者
Zheng, Guoqiang [1 ,2 ]
Dong, Xiaoyun [1 ,2 ]
Wei, Jiaping [1 ]
Liu, Zigang [1 ,2 ]
Aslam, Ali [3 ]
Cui, JunMei [1 ]
Li, Hui [1 ,2 ]
Wang, Ying [1 ,2 ]
Tian, Haiyan [1 ,2 ]
Cao, Xiaodong [1 ,2 ]
机构
[1] State Key Lab Aridland Crop Sci, Lanzhou, Peoples R China
[2] Gansu Agr Univ, Coll Agron, Lanzhou, Peoples R China
[3] Super Univ, Affiliat Fac Agr & Vet Sci, Lahore, Pakistan
基金
中国国家自然科学基金;
关键词
Winter rapeseed; Freezing stress; DNA methylation; Freezing tolerance; Transcriptome; FREEZING TOLERANCE; DNA METHYLATION; GENE-EXPRESSION; ANALYSIS REVEALS; PLASMA-MEMBRANE; ABIOTIC STRESS; CBF; ACCLIMATION; RESPONSES; CASCADE;
D O I
10.1186/s12870-022-03797-1
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background Cytosine methylation, the main type of DNA methylation, regulates gene expression in plant response to environmental stress. The winter rapeseed has high economic and ecological value in China's Northwest, but the DNA methylation pattern of winter rapeseed during freezing stress remains unclear. Result This study integrated the methylome and transcriptome to explore the genome-scale DNA methylation pattern and its regulated pathway of winter rapeseed, using freezing-sensitive (NF) and freezing-resistant (NS) cultivars.The average methylation level decreased under freezing stress, and the decline in NF was stronger than NS after freezing stress. The CG methylation level was the highest among the three contexts of CG, CHG, and CHH. At the same time, the CHH proportion was high, and the methylation levels were highest 2 kb up/downstream, followed by the intron region. The C sub-genomes methylation level was higher than the A sub-genomes. The methylation levels of chloroplast and mitochondrial DNA were much lower than the B. napus nuclear DNA, the SINE methylation level was highest among four types of transposable elements (TEs), and the preferred sequence of DNA methylation did not change after freezing stress. A total of 1732 differentially expressed genes associated with differentially methylated genes (DMEGs) were identified in two cultivars under 12 h and 24 h in three contexts by combining whole-genome bisulfite sequencing( and RNA-Seq data. Function enrichment analysis showed that most DMEGs participated in linoleic acid metabolism, alpha-linolenic acid metabolism, carbon fixation in photosynthetic organisms, flavonoid biosynthesis, and plant hormone signal transduction pathways. Meanwhile, some DMEGs encode core transcription factors in plant response to stress. Conclusion Based on the findings of DNA methylation, the freezing tolerance of winter rapeseed is achieved by enhanced signal transduction, lower lipid peroxidation, stronger cell stability, increased osmolytes, and greater reactive oxygen species (ROS) scavenging. These results provide novel insights into better knowledge of the methylation regulation of tolerance mechanism in winter rapeseed under freezing stress.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Analysis of Lhcb gene family in rapeseed (Brassica napus L.) identifies a novel member "BnLhcb3.4" modulating cold tolerance
    Zhang, Yi
    Raza, Ali
    Huang, He
    Su, Wei
    Luo, Dan
    Zeng, Liu
    Ding, Xiaoyu
    Cheng, Yong
    Liu, Zhaofeng
    Li, Quanan
    Lv, Yan
    Zou, Xiling
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2022, 198
  • [42] Morphological and genetic analysis of a cleistogamous mutant in rapeseed (Brassica napus L.)
    Shah Faisal
    Yuan Guo
    Shan Zang
    Biting Cao
    Gaoping Qu
    Shengwu Hu
    Genetic Resources and Crop Evolution, 2018, 65 : 397 - 403
  • [43] Analysis of gaps in rapeseed (Brassica napus L.) collections in European genebanks
    Weise, Stephan
    Hoekstra, Roel
    Kutschan, Kim Jana
    Oppermann, Markus
    van Treuren, Rob
    Lohwasser, Ulrike
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [44] Morphological and genetic analysis of a cleistogamous mutant in rapeseed (Brassica napus L.)
    Faisal, Shah
    Guo, Yuan
    Zang, Shan
    Cao, Biting
    Qu, Gaoping
    Hu, Shengwu
    GENETIC RESOURCES AND CROP EVOLUTION, 2018, 65 (02) : 397 - 403
  • [45] Role of jasmonic acid in improving tolerance of rapeseed (Brassica napus L.) to Cd toxicity
    Ali, Essa
    Hussain, Nazim
    Shamsi, Imran Haider
    Jabeen, Zahra
    Siddiqui, Muzammil Hussain
    Jiang, Li-xi
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE B, 2018, 19 (02): : 130 - 146
  • [46] Gradual Exposure to Salinity Improves Tolerance to Salt Stress in Rapeseed (Brassica napus L.)
    Santangeli, Michael
    Capo, Concetta
    Beninati, Simone
    Pietrini, Fabrizio
    Forni, Cinzia
    WATER, 2019, 11 (08)
  • [47] Association mapping of salt tolerance traits at germination stage of rapeseed (Brassica napus L.)
    Wan, Heping
    Wei, Yinke
    Qian, Jiali
    Gao, Yunlei
    Wen, Jing
    Yi, Bin
    Ma, Chaozhi
    Tu, Jinxing
    Fu, Tingdong
    Shen, Jinxiong
    EUPHYTICA, 2018, 214 (10) : 1 - 16
  • [48] Association mapping of salt tolerance traits at germination stage of rapeseed (Brassica napus L.)
    Heping Wan
    Yinke Wei
    Jiali Qian
    Yunlei Gao
    Jing Wen
    Bin Yi
    Chaozhi Ma
    Jinxing Tu
    Tingdong Fu
    Jinxiong Shen
    Euphytica, 2018, 214
  • [49] Development of a protocol for frost-tolerance evaluation in rapeseed/canola(Brassica napus L.)
    Danielle Fiebelkorn
    Mukhlesur Rahman
    The Crop Journal, 2016, 4 (02) : 147 - 152
  • [50] Global transcriptome analysis reveals potential genes associated with genic male sterility of rapeseed (Brassica napus L.)
    Jiang, Jianxia
    Xu, Pengfei
    Zhang, Junying
    Li, Yanli
    Zhou, Xirong
    Jiang, Meiyan
    Zhu, Jifeng
    Wang, Weirong
    Yang, Liyong
    FRONTIERS IN PLANT SCIENCE, 2022, 13