Atomic-scale electron microscopy at ambient pressure

被引:246
|
作者
Creemer, J. F. [1 ]
Helveg, S. [2 ]
Hoveling, G. H. [3 ]
Ullmann, S. [2 ]
Molenbroek, A. M. [2 ]
Sarro, P. M. [1 ]
Zandbergen, H. W. [4 ]
机构
[1] Delft Univ Technol, DIMES ECTM, NL-2600 GB Delft, Netherlands
[2] Haldor Topsoe Res Labs, DK-2800 Lyngby, Denmark
[3] Delft Univ Technol, DEMO, NL-2600 GA Delft, Netherlands
[4] Delft Univ Technol, HREM, Kavli Inst NanoSci, NL-2600 GA Delft, Netherlands
关键词
environmental TEM; ETEM; microelectromechanical systems; MEMS; gas-solid interactions; nanocrystals; methanol synthesis catalyst;
D O I
10.1016/j.ultramic.2008.04.014
中图分类号
TH742 [显微镜];
学科分类号
摘要
We demonstrate a novel nanoreactor for performing atomic-resolution environmental transmission electron microscopy (ETEM) of nanostructured materials during exposure to gases at ambient pressures and elevated temperatures. The nanoreactor is a microelectromechanical system (MEMS) and is functionalized with a micrometer-sized gas-flow channel, electron-transparent windows and a heating device. It fits into the tip of a dedicated sample holder that can be used in a normal CM microscope of Philips/FEI Company. The nanoreactor performance was demonstrated by ETEM imaging of a Cu/ZnO catalyst for methanol synthesis during exposure to hydrogen. Specifically, the nanoreactor facilitated the direct observation of Cu nanocrystal growth and mobility on a sub-second time scale luring heating to 500 degrees C and exposure to 1.2 bar of H-2. For the same gas reaction environment, ETEM images show atomic lattice fringes in the Cu nanocrystals with spacing of 0.18 nm, attesting the spatial resolution limit of the system. The nanoreactor concept opens up new possibilities for in situ studies of nanomaterials and the ways they interact with their ambient working environment in diverse areas, such as heterogeneous catalysis, electrochemistry, nanofabrication, materials science and biology. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:993 / 998
页数:6
相关论文
共 50 条
  • [1] Atomic-Scale Friction and Adhesion at Ambient Pressure
    Choi, Joong Il Jake
    Cho, Hunyoung
    Park, Jeong Young
    LANGMUIR, 2024, 40 (41) : 21317 - 21326
  • [2] Ultrastable Atomic Force Microscopy: Atomic-Scale Stability and Registration in Ambient Conditions
    King, Gavin M.
    Carter, Ashley R.
    Churnside, Allison B.
    Eberle, Louisa S.
    Perkins, Thomas T.
    NANO LETTERS, 2009, 9 (04) : 1451 - 1456
  • [3] Atomic-scale electron microscopy and spectroscopy of AlMnPd quasicrystal
    Abe, E.
    Seki, T.
    Sawada, H.
    Okunishi, E.
    Kondo, Y.
    Takayanagi, K.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2011, 67 : C622 - C622
  • [4] Combining electron microscopy with atomic-scale calculations——A personal perspective
    Sokrates T.Pantelides
    Chinese Physics B, 2024, 33 (12) : 14 - 24
  • [5] Imaging the atomic-scale structure of vanadia powder surface using ambient atomic force microscopy
    Mathieu, C
    Peralta, S
    Da Costa, A
    Barbaux, Y
    SURFACE SCIENCE, 1998, 395 (01) : L201 - L206
  • [6] Atomic-scale study of nanocatalysts by aberration-corrected electron microscopy
    Zhang, Xun
    Zhang, Xiuli
    Yuan, Biao
    Liang, Chao
    Yu, Yi
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (41)
  • [7] Combining electron microscopy with atomic-scale calculations-A personal perspective
    Pantelides, Sokrates T.
    CHINESE PHYSICS B, 2024, 33 (12)
  • [8] The structure of quasicrystals studied by atomic-scale observations of transmission electron microscopy
    Hiraga, K
    ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 122, 2002, 122 : 1 - 86
  • [9] In situ electron microscopy: atomic-scale dynamics of metal oxidation and corrosion
    Zhou, Zhikang
    Chen, Xiaobo
    Wu, Dongxiang
    Zhu, Dingding
    Chen, Jianmin
    Sun, Xianhu
    Li, Meng
    Cai, Canying
    Yang, Judith C.
    Zhou, Guangwen
    NPJ MATERIALS DEGRADATION, 2025, 9 (01)
  • [10] Fabrication of electron beam deposited tip for atomic-scale atomic force microscopy in liquid
    Miyazawa, K.
    Izumi, H.
    Watanabe-Nakayama, T.
    Asakawa, H.
    Fukuma, T.
    NANOTECHNOLOGY, 2015, 26 (10)