Atomic-scale electron microscopy at ambient pressure

被引:245
作者
Creemer, J. F. [1 ]
Helveg, S. [2 ]
Hoveling, G. H. [3 ]
Ullmann, S. [2 ]
Molenbroek, A. M. [2 ]
Sarro, P. M. [1 ]
Zandbergen, H. W. [4 ]
机构
[1] Delft Univ Technol, DIMES ECTM, NL-2600 GB Delft, Netherlands
[2] Haldor Topsoe Res Labs, DK-2800 Lyngby, Denmark
[3] Delft Univ Technol, DEMO, NL-2600 GA Delft, Netherlands
[4] Delft Univ Technol, HREM, Kavli Inst NanoSci, NL-2600 GA Delft, Netherlands
关键词
environmental TEM; ETEM; microelectromechanical systems; MEMS; gas-solid interactions; nanocrystals; methanol synthesis catalyst;
D O I
10.1016/j.ultramic.2008.04.014
中图分类号
TH742 [显微镜];
学科分类号
摘要
We demonstrate a novel nanoreactor for performing atomic-resolution environmental transmission electron microscopy (ETEM) of nanostructured materials during exposure to gases at ambient pressures and elevated temperatures. The nanoreactor is a microelectromechanical system (MEMS) and is functionalized with a micrometer-sized gas-flow channel, electron-transparent windows and a heating device. It fits into the tip of a dedicated sample holder that can be used in a normal CM microscope of Philips/FEI Company. The nanoreactor performance was demonstrated by ETEM imaging of a Cu/ZnO catalyst for methanol synthesis during exposure to hydrogen. Specifically, the nanoreactor facilitated the direct observation of Cu nanocrystal growth and mobility on a sub-second time scale luring heating to 500 degrees C and exposure to 1.2 bar of H-2. For the same gas reaction environment, ETEM images show atomic lattice fringes in the Cu nanocrystals with spacing of 0.18 nm, attesting the spatial resolution limit of the system. The nanoreactor concept opens up new possibilities for in situ studies of nanomaterials and the ways they interact with their ambient working environment in diverse areas, such as heterogeneous catalysis, electrochemistry, nanofabrication, materials science and biology. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:993 / 998
页数:6
相关论文
共 30 条
  • [1] A microfabricated suspended-tube chemical reactor for thermally efficient fuel processing
    Arana, LR
    Schaevitz, SB
    Franz, AJ
    Schmidt, MA
    Jensen, KF
    [J]. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2003, 12 (05) : 600 - 612
  • [2] CONTROLLED ATMOSPHERE ELECTRON-MICROSCOPY
    BAKER, RTK
    HARRIS, PS
    [J]. JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1972, 5 (08): : 793 - &
  • [3] Environmental high resolution electron microscopy and applications to chemical science
    Boyes, ED
    Gai, PL
    [J]. ULTRAMICROSCOPY, 1997, 67 (1-4) : 219 - 232
  • [4] Failure analysis of micro-heating elements suspended on thin membranes
    Briand, D
    Beaudoin, F
    Courbat, J
    de Rooij, NF
    Desplats, R
    Perdu, P
    [J]. MICROELECTRONICS RELIABILITY, 2005, 45 (9-11) : 1786 - 1789
  • [5] Design and fabrication of high-temperature micro-hotplates for drop-coated gas sensors
    Briand, D
    Krauss, A
    van der Schoot, B
    Weimar, U
    Barsan, N
    Göpel, W
    de Rooij, NF
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2000, 68 (1-3) : 223 - 233
  • [6] Butler E.P., 1981, PRACTICAL METHODS EL, V9
  • [7] DAULTON TL, 2002, JEOL NEWS E, V37, P6
  • [8] Micro-machined electron transparent alumina vacuum windows
    Doll, T
    Hochberg, M
    Barsic, D
    Scherer, A
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2000, 87 (1-2) : 52 - 59
  • [9] STM study of Cu growth on the ZnO(1010) surface
    Dulub, O
    Boatner, LA
    Diebold, U
    [J]. SURFACE SCIENCE, 2002, 504 (1-3) : 271 - 281
  • [10] Egerton R. F., 1996, ELECT ENERGY LOSS SP