Conjugated microporous polymer derived N, O and S co-doped sheet-like carbon materials as anode materials for high-performance lithium-ion batteries

被引:15
|
作者
Li, Chunxia [1 ]
Kong, Dehao [3 ]
Wang, Bo [1 ]
Du, Hongmei [1 ]
Zhao, Jinsheng [1 ]
Dong, Yunyun [1 ]
Xie, Yu [2 ]
机构
[1] Liaocheng Univ, Coll Chem & Chem Engn, Liaocheng 252059, Shandong, Peoples R China
[2] Nanchang Hangkong Univ, Coll Environm & Chem Engn, Nanchang 330063, Jiangxi, Peoples R China
[3] Guangxi Univ Sci & Technol, Sch Elect & Informat Engn, Liuzhou 545006, Peoples R China
基金
中国国家自然科学基金;
关键词
N; O and S co-doped; covalent organic framework; electrochemical performance; lithium-ion batteries; anode materials; COVALENT ORGANIC FRAMEWORK; NITROGEN; MICROSPHERES; STABILITY; COMPOSITE; CAPACITY;
D O I
10.1016/j.jtice.2022.104293
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Rational design and preparation of nitrogen (N), oxygen (O), and sulfur (S) co-doped materials with distinguished electrochemical performance in lithium-ion batteries are highly sensible. In this study, layered structure carbon material (PTPAO@600) with co-doped N, O and S elements is prepared by carbonizing conjugated microporous polymers (CMPs) as a precursor. When PTPAO@600 electrode material employed as anode of LIBs, and evaluated its properties in electrochemical aspects. After cycling for 800 times under 0.1 A g (1), PTPAO@600 electrode has shown powerful reversible specific capacity of 1142.5 mAh g (1), and excellent rate capability of 275 mAh g (1) at 2.0 A g (1) large current density. Long-cycle performance for 1000 charge/discharge cycles shows that the capacity is retained at 490.9 mAh g (1) under 1.0 A g (1), revealing its high stability. Such high lithium storage performance is mainly attributed to rich heteroatom co-doping, larger specific surface area and high Li+ diffusion coefficient. The superior electrochemical performance makes the PTPAO@600 a anode material with potential in secondary batteries. (c) 2022 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Nitrogen-doped porous carbon spheres anchored with Co3O4 nanoparticles as high-performance anode materials for lithium-ion batteries
    Guo, Liangui
    Ding, Yu
    Qin, Caiqin
    Li, Wei
    Du, Jun
    Fu, Zhengbin
    Song, Wulin
    Wang, Feng
    ELECTROCHIMICA ACTA, 2016, 187 : 234 - 242
  • [42] Cyclooctatetrathiophene Based MOF-Derived Porous Materials as High-Performance Anode for Lithium-Ion Batteries
    Zhang, Weimiao
    Zhong, Yuan
    Shen, Zhan
    Meng, Ya-Ru
    Wang, Yang
    Xu, Bingqing
    Su, Jian
    Zhang, Gen
    APPLIED SURFACE SCIENCE, 2025, 683
  • [43] Hybrid NiO/Co3O4 nanoflowers as high-performance anode materials for lithium-ion batteries
    Zhang, Yifan
    Xie, Minghao
    He, Yubin
    Zhang, Yamin
    Liu, Lindong
    Hao, Tianqi
    Ma, Yao
    Shi, Yifeng
    Sun, Zhijian
    Liu, Nian
    Zhang, John
    CHEMICAL ENGINEERING JOURNAL, 2021, 420
  • [44] Porous polyhedral and fusiform Co3O4 anode materials for high-performance lithium-ion batteries
    Huang, Guoyong
    Xu, Shengming
    Lu, Shasha
    Li, Linyan
    Sun, Hongyu
    ELECTROCHIMICA ACTA, 2014, 135 : 420 - 427
  • [45] A novel dendritic crystal Co3O4 as high-performance anode materials for lithium-ion batteries
    Yudi Mo
    Qiang Ru
    Xiong Song
    Shejun Hu
    Bonan An
    Journal of Applied Electrochemistry, 2014, 44 : 781 - 788
  • [46] Co3O4 Nanofibers Modified by Graphene as High-performance Anode Materials for Lithium-ion Batteries
    Gao, Hairong
    Sun, Haijie
    Zhao, Aijuan
    Wang, Ling
    Liu, Na
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (09): : 8666 - 8672
  • [47] A novel dendritic crystal Co3O4 as high-performance anode materials for lithium-ion batteries
    Mo, Yudi
    Ru, Qiang
    Song, Xiong
    Hu, Shejun
    An, Bonan
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2014, 44 (07) : 781 - 788
  • [48] N/S-Co-Doped Porous Carbon Sheets Derived from Bagasse as High-Performance Anode Materials for Sodium-Ion Batteries
    Wang, Lili
    Hu, Lei
    Yang, Wei
    Liang, Dewei
    Liu, Lingli
    Liang, Sheng
    Yang, Caoyu
    Fang, Zezhong
    Dong, Qiang
    Deng, Chonghai
    NANOMATERIALS, 2019, 9 (09)
  • [49] Rational design of Co embedded N,S-codoped carbon nanoplates as anode materials for high performance lithium-ion batteries
    Shuang W.
    Kong L.
    Zhong M.
    Wang D.
    Liu J.
    Bu X.-H.
    Wang, Danhong (dhwang@nankai.edu.cn), 2018, Royal Society of Chemistry (47) : 12385 - 12392
  • [50] Rational design of Co embedded N,S-codoped carbon nanoplates as anode materials for high performance lithium-ion batteries
    Shuang, Wei
    Kong, Lingjun
    Zhong, Ming
    Wang, Danhong
    Liu, Jian
    Bu, Xian-He
    DALTON TRANSACTIONS, 2018, 47 (35) : 12385 - 12392