Recruitment of RNA Polymerase II to Metabolic Gene Promoters Is Inhibited in the Failing Heart Possibly Through PGC-1α ( Peroxisome Proliferator-Activated Receptor-γ Coactivator-1α) Dysregulation

被引:24
作者
Bhat, Santosh [1 ]
Chin, Adave [1 ]
Shirakabe, Akihiro [1 ]
Ikeda, Yoshiyuki [1 ]
Ikeda, Shohei [1 ]
Zhai, Peiyong [1 ]
Hsu, Chiao-po [2 ]
Sayed, Danish [1 ]
Abdellatif, Maha [1 ]
Byun, Jaemin [1 ]
Schesing, Kevin [1 ]
Tang, Fan [1 ]
Tian, Yimin [1 ]
Babu, Gopal [1 ]
Ralda, Guersom [1 ]
Warren, Junco S. [1 ,3 ]
Cho, Jaeyeaon [4 ]
Sadoshima, Junichi [1 ]
Oka, Shin-ichi [1 ]
机构
[1] Rutgers Biomed Hlth Sci, Dept Cell Biol & Mol Med, Newark, NJ USA
[2] Natl Yang Ming Univ, Vet Gen Hosp, Sch Med, Div Cardiovasc Surg,Dept Surg, Taipei, Taiwan
[3] Univ Utah, Nora Eccles Harrison Cardiovasc Res & Training In, Dept Internal Med, Salt Lake City, UT 84112 USA
[4] Yonsei Univ, Coll Med, Avison Biomed Res Ctr, Dept Biomed Sci, Seoul, South Korea
关键词
chromatin; energy metabolism; heart failure; RNA polymerase II; ENERGY-METABOLISM; ERR-ALPHA; MITOCHONDRIAL; TRANSCRIPTION; EXPRESSION; FAILURE; COMPLEX; LEADS;
D O I
10.1161/CIRCHEARTFAILURE.118.005529
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND: Proper dynamics of RNA polymerase II, such as promoter recruitment and elongation, are essential for transcription. PGC-1 alpha (peroxisome proliferator-activated receptor [PPAR]-gamma coactivator-1 alpha), also termed PPARGC1 alpha, is a transcriptional coactivator that stimulates energy metabolism, and PGC-1 alpha target genes are downregulated in the failing heart. However, whether the dysregulation of polymerase II dynamics occurs in PGC-1 alpha target genes in heart failure has not been defined. METHODS AND RESULTS: Chromatin immunoprecipitation-sequencing revealed that reduced promoter occupancy was a major form of polymerase II dysregulation on PGC-1 alpha target metabolic gene promoters in the pressure-overload-induced heart failure model. PGC-1 alpha-cKO (cardiac-specific PGC-1 alpha knockout) mice showed phenotypic similarity to the pressure-overload-induced heart failure model in wild-type mice, such as contractile dysfunction and downregulation of PGC-1 alpha target genes, even under basal conditions. However, the protein levels of PGC-1 alpha were neither changed in the pressure-overload model nor in human failing hearts. Chromatin immunoprecipitation assays revealed that the promoter occupancy of polymerase II and PGC-1 alpha was consistently reduced both in the pressure-overload model and PGC-1 alpha-cKO mice. In vitro DNA binding assays using an endogenous PGC-1 alpha target gene promoter sequence confirmed that PGC-1 alpha recruits polymerase II to the promoter. CONCLUSIONS: These results suggest that PGC-1 alpha promotes the recruitment of polymerase II to the PGC-1 alpha target gene promoters. Downregulation of PGC-1 alpha target genes in the failing heart is attributed, in part, to a reduction of the PGC-1 alpha occupancy and the polymerase II recruitment to the promoters, which might be a novel mechanism of metabolic perturbations in the failing heart.
引用
收藏
页数:13
相关论文
共 48 条
  • [1] Characterization of Novel Peroxisome Proliferator-activated Receptor γ Coactivator-1α (PGC-1α) Isoform in Human Liver
    Felder, Thomas K.
    Soyal, Selma M.
    Oberkofler, Hannes
    Hahne, Penelope
    Auer, Simon
    Weiss, Richard
    Gadermaier, Gabriele
    Miller, Karl
    Krempler, Franz
    Esterbauer, Harald
    Patsch, Wolfgang
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (50) : 42923 - 42936
  • [2] Peroxisome proliferator-activated receptor γ coactivator-1α in heart disease (Review)
    Sun, Siyu
    Guo, Huige
    Chen, Guohui
    Zhang, Hui
    Zhang, Zhanrui
    Wang, Xiulong
    Li, Dongxu
    Li, Xuefang
    Zhao, Guoan
    Lin, Fei
    MOLECULAR MEDICINE REPORTS, 2025, 31 (01)
  • [3] Sirtuin 1 (SIRT1) Deacetylase Activity Is Not Required for Mitochondrial Biogenesis or Peroxisome Proliferator-activated Receptor-γ Coactivator-1α (PGC-1α) Deacetylation following Endurance Exercise
    Philp, Andrew
    Chen, Ai
    Lan, Debin
    Meyer, Gretchen A.
    Murphy, Anne N.
    Knapp, Amy E.
    Olfert, I. Mark
    McCurdy, Carrie E.
    Marcotte, George R.
    Hogan, Michael C.
    Baar, Keith
    Schenk, Simon
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (35) : 30561 - 30570
  • [4] A Role for Peroxisome Proliferator-activated Receptor γ Coactivator 1 (PGC-1) in the Regulation of Cardiac Mitochondrial Phospholipid Biosynthesis
    Lai, Ling
    Wang, Miao
    Martin, Ola J.
    Leone, Teresa C.
    Vega, Rick B.
    Han, Xianlin
    Kelly, Daniel P.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (04) : 2250 - 2259
  • [5] The diagnostic value of peroxisome proliferator-activated receptor-γ coactivator-1α in identifying different chronic heart failure phenotypes
    Zhang, Shiwen
    Zhou, Yufei
    Ma, Yanfang
    Li, Zhan
    Hou, Yinglong
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
  • [6] Dual modulation of both lipid oxidation and synthesis by peroxisome proliferator-activated receptor-γ coactivator-1α and-1β in cultured myotubes
    Espinoza, Daniel O.
    Boros, Laszlo G.
    Crunkhorn, Sarah
    Gami, Hiral
    Patti, Mary-Elizabeth
    FASEB JOURNAL, 2010, 24 (04) : 1003 - 1014
  • [7] Peroxisome proliferator-activated receptor-γ-coactivator 1α (PGC-1α) gene expression in chronic kidney disease patients on hemodialysis: relation to hemodialysis-related cardiovascular morbidity and mortality
    Elsayed, Eman Tayae
    Nassra, Rasha Adel
    Naga, Yasmine Salah
    INTERNATIONAL UROLOGY AND NEPHROLOGY, 2017, 49 (10) : 1835 - 1844
  • [8] Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) upregulated E-cadherin expression in HepG2 cells
    Lee, Hui-Ju
    Su, Yeu
    Lui, Wing-Yiu
    Chau, Gar-Yang
    Yin, Pen-Hui
    Lee, Hsin-Chen
    Chi, Chin-Wen
    FEBS LETTERS, 2008, 582 (05) : 627 - 634
  • [9] Sensitivity of Lipid Metabolism and Insulin Signaling to Genetic Alterations in Hepatic Peroxisome Proliferator-Activated Receptor-γ Coactivator-1α Expression
    Estall, Jennifer L.
    Kahn, Mario
    Cooper, Marcus P.
    Fisher, Ffolliott Martin
    Wu, Michele K.
    Laznik, Dina
    Qu, Lishu
    Cohen, David E.
    Shulman, Gerald I.
    Spiegelman, Bruce M.
    DIABETES, 2009, 58 (07) : 1499 - 1508
  • [10] SIRT1 Controls the Transcription of the Peroxisome Proliferator-activated Receptor-γ Co-activator-1α (PGC-1α) Gene in Skeletal Muscle through the PGC-1α Autoregulatory Loop and Interaction with MyoD
    Amat, Ramon
    Planavila, Anna
    Chen, Shen Liang
    Iglesias, Roser
    Giralt, Marta
    Villarroya, Francesc
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (33) : 21872 - 21880