On Stable Khovanov Homology of Torus Knots

被引:26
作者
Gorsky, Eugene [1 ]
Oblomkov, Alexei [2 ]
Rasmussen, Jacob [3 ]
机构
[1] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
[2] Univ Massachusetts, Dept Math, Amherst, MA 01003 USA
[3] Univ Cambridge, Ctr Math Sci, Dept Pure Math, Cambridge CB3 0WB, England
关键词
Khovanov homology; torus knots; Koszul complex; Rogers-Ramanujan identity; REPRESENTATIONS; ALGEBRA;
D O I
10.1080/10586458.2013.798553
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We conjecture that the stable Khovanov homology of torus knots can be described as the Koszul homology of an explicit irregular sequence of quadratic polynomials. The corresponding Poincare series turns out to be related to the Rogers-Ramanujan identity.
引用
收藏
页码:265 / 281
页数:17
相关论文
共 37 条
[1]  
Andrews G.E., 1976, THEORY PARTITIONS
[2]  
Asaeda MM, 2004, NATO SCI SER II MATH, V179, P135
[3]   Khovanov's homology for tangle and cobordisms [J].
Bar-Natan, D .
GEOMETRY & TOPOLOGY, 2005, 9 :1443-1499
[4]  
Bar-Natan D., 2002, Algebr. Geom. Topol., V2, P337, DOI [10.2140/agt.2002.2.337, DOI 10.2140/AGT.2002.2.337]
[5]  
Bar-Natan D. S, 2012, KNOT ATLAS
[6]   Fast Khovanov homology computations [J].
Bar-Natan, Dror .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2007, 16 (03) :243-255
[7]  
Bruschek C. H, 2011, ZONING, P211
[8]   The superpolynomial for knot homologies [J].
Dunfield, Nathan M. ;
Gukov, Sergei ;
Rasmussen, Jacob .
EXPERIMENTAL MATHEMATICS, 2006, 15 (02) :129-159
[9]   COMPACT GENERATORS IN CATEGORIES OF MATRIX FACTORIZATIONS [J].
Dyckerhoff, Tobias .
DUKE MATHEMATICAL JOURNAL, 2011, 159 (02) :223-274