An offspring of multivariate extreme value theory: The max-characteristic function

被引:6
作者
Falk, Michael [1 ]
Stupfler, Gilles [2 ]
机构
[1] Univ Wurzburg, D-97074 Wurzburg, Germany
[2] Univ Nottingham, Sch Math Sci, Univ Pk, Nottingham NG7 2RD, England
关键词
Multivariate extreme-value theory; Max-characteristic function; Wasserstein metric; Convergence;
D O I
10.1016/j.jmva.2016.10.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper introduces max-characteristic functions (max-CFs), which are an offspring of multivariate extreme-value theory. A max-CF characterizes the distribution of a random vector in R-d, whose components are nonnegative and have finite expectation. Pointwise convergence of max-CFs is shown to be equivalent to convergence with respect to the Wasserstein metric. The space of max-CFs is not closed in the sense of pointwise convergence. An inversion formula for max-CFs is established. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:85 / 95
页数:11
相关论文
共 12 条
[1]  
[Anonymous], 2010, Laws of small numbers: extremes and rare events
[2]   Max-stable processes and the functional D-norm revisited [J].
Aulbach, Stefan ;
Falk, Michael ;
Hofmann, Martin ;
Zott, Maximilian .
EXTREMES, 2015, 18 (02) :191-212
[3]   The space of D-norms revisited [J].
Aulbach, Stefan ;
Falk, Michael ;
Zott, Maximilian .
EXTREMES, 2015, 18 (01) :85-97
[4]   On max-stable processes and the functional D-norm [J].
Aulbach, Stefan ;
Falk, Michael ;
Hofmann, Martin .
EXTREMES, 2013, 16 (03) :255-283
[5]   The multivariate Piecing-Together approach revisited [J].
Aulbach, Stefan ;
Falk, Michael ;
Hofmann, Martin .
JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 110 :161-170
[6]   A multivariate piecing-together approach with an application to operational loss data [J].
Aulbach, Stefan ;
Bayer, Verena ;
Falk, Michael .
BERNOULLI, 2012, 18 (02) :455-475
[7]   ON SPATIAL EXTREMES: WITH APPLICATION TO A RAINFALL PROBLEM [J].
Buishand, T. A. ;
de Haan, L. ;
Zhou, C. .
ANNALS OF APPLIED STATISTICS, 2008, 2 (02) :624-642
[8]  
El Methni J., 2016, STAT SINICA
[9]  
Embrechts P., 1997, Modelling Extremal Events for Insurance and Finance, DOI 10.1007/978-3-642-33483-2
[10]   On idempotent D-norms [J].
Falk, Michael .
JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 139 :283-294