An offspring of multivariate extreme value theory: The max-characteristic function

被引:5
|
作者
Falk, Michael [1 ]
Stupfler, Gilles [2 ]
机构
[1] Univ Wurzburg, D-97074 Wurzburg, Germany
[2] Univ Nottingham, Sch Math Sci, Univ Pk, Nottingham NG7 2RD, England
关键词
Multivariate extreme-value theory; Max-characteristic function; Wasserstein metric; Convergence;
D O I
10.1016/j.jmva.2016.10.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper introduces max-characteristic functions (max-CFs), which are an offspring of multivariate extreme-value theory. A max-CF characterizes the distribution of a random vector in R-d, whose components are nonnegative and have finite expectation. Pointwise convergence of max-CFs is shown to be equivalent to convergence with respect to the Wasserstein metric. The space of max-CFs is not closed in the sense of pointwise convergence. An inversion formula for max-CFs is established. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:85 / 95
页数:11
相关论文
共 19 条
  • [1] Estimation of extreme wind pressure coefficient in a zone by multivariate extreme value theory
    Yang, Qingshan
    Li, Danyu
    Hui, Yi
    Law, Siu-Seong
    WIND AND STRUCTURES, 2020, 31 (03) : 197 - 207
  • [2] A multivariate extreme value theory approach to anomaly clustering and visualization
    Maël Chiapino
    Stephan Clémençon
    Vincent Feuillard
    Anne Sabourin
    Computational Statistics, 2020, 35 : 607 - 628
  • [3] Multivariate Extreme Value Theory - A Tutorial with Applications to Hydrology and Meteorology
    Dutfoy, Anne
    Parey, Sylvie
    Roche, Nicolas
    DEPENDENCE MODELING, 2014, 2 (01): : 30 - 48
  • [4] A multivariate extreme value theory approach to anomaly clustering and visualization
    Chiapino, Mael
    Clemencon, Stephan
    Feuillard, Vincent
    Sabourin, Anne
    COMPUTATIONAL STATISTICS, 2020, 35 (02) : 607 - 628
  • [5] Multivariate Extreme Value Theory Based Channel Modeling for Ultra-Reliable Communications
    Mehrnia, Niloofar
    Coleri, Sinem
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (05) : 4964 - 4975
  • [6] The multivariate extremal index and the dependence structure of a multivariate extreme value distribution
    A. P. Martins
    H. Ferreira
    TEST, 2005, 14 : 433 - 448
  • [7] The multivariate extremal index and the dependence structure of a multivariate extreme value distribution
    Martins, AP
    Ferreira, H
    TEST, 2005, 14 (02) : 433 - 447
  • [8] PROBABILISTIC PATIENT MONITORING USING EXTREME VALUE THEORY A Multivariate, Multimodal Methodology for Detecting Patient Deterioration
    Hugueny, Samuel
    Clifton, David A.
    Tarassenko, Lionel
    BIOSIGNALS 2010: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON BIO-INSPIRED SYSTEMS AND SIGNAL PROCESSING, 2010, : 5 - 12
  • [10] Modeling multivariate extreme value distributions via Markov trees
    Hu, Shuang
    Peng, Zuoxiang
    Segers, Johan
    SCANDINAVIAN JOURNAL OF STATISTICS, 2024, 51 (02) : 760 - 800