Infinitely many periodic solutions for ordinary p-Laplacian systems

被引:13
作者
Li, Chun [1 ]
Agarwal, Ravi P. [2 ]
Tang, Chun-Lei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Texas A&M Univ, Dept Math, Kingsville, TX 78363 USA
基金
中国国家自然科学基金;
关键词
Periodic solutions; critical points; p-Laplacian systems; 2ND-ORDER HAMILTONIAN-SYSTEMS; BOUNDARY-VALUE-PROBLEMS; SUBHARMONIC SOLUTIONS; EXISTENCE; OSCILLATIONS;
D O I
10.1515/anona-2014-0048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some existence theorems are obtained for infinitely many periodic solutions of ordinary p-Laplacian systems by minimax methods in critical point theory.
引用
收藏
页码:251 / 261
页数:11
相关论文
共 50 条
  • [1] Existence of infinitely many periodic solutions for ordinary p-Laplacian systems
    Ma, Shiwang
    Zhang, Yuxiang
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (01) : 469 - 479
  • [2] Infinitely many periodic solutions for ordinary p(t)-Laplacian differential systems
    Liu, Chungen
    Zhong, Yuyou
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (05): : 1653 - 1667
  • [3] Nonconstant periodic solutions for a class of ordinary p-Laplacian systems
    Li, Chun
    Agarwal, Ravi P.
    Pu, Yang
    Tang, Chun-Lei
    [J]. BOUNDARY VALUE PROBLEMS, 2016,
  • [4] On the existence of infinitely many periodic solutions for second-order ordinary p-Laplacian system
    Zhang, Qiongfen
    Tang, X. H.
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2012, 19 (01) : 121 - 136
  • [5] Existence and multiplicity of periodic solutions for the ordinary p-Laplacian systems
    Liao K.
    Tang C.-L.
    [J]. Journal of Applied Mathematics and Computing, 2011, 35 (1-2) : 395 - 406
  • [6] Infinitely many solutions of p-sublinear p-Laplacian equations
    Jing, Yongtao
    Liu, Zhaoli
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 429 (02) : 1240 - 1257
  • [7] PERIODIC SOLUTIONS FOR AN ORDINARY P-LAPLACIAN SYSTEM
    Zhang, Xingyong
    Tang, Xianhua
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (03): : 1369 - 1396
  • [8] Infinitely many homoclinic solutions for the second-order discrete p-Laplacian systems
    Chen, Peng
    Tang, X. H.
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2013, 20 (02) : 193 - 212
  • [9] INFINITELY MANY PERIODIC SOLUTIONS FOR ANISOTROPIC Φ-LAPLACIAN SYSTEMS
    Acinas, Sonia
    Mazzone, Fernando
    [J]. DIFFERENTIAL EQUATIONS & APPLICATIONS, 2022, 14 (04): : 533 - 551
  • [10] Subharmonic solutions for a class of ordinary p-Laplacian systems*
    Li, Chun
    Agarwal, Ravi P.
    Ou, Zeng-Qi
    [J]. LITHUANIAN MATHEMATICAL JOURNAL, 2018, 58 (02) : 157 - 166