A hot-electron thermophotonic solar cell demonstrated by thermal up-conversion of sub-bandgap photons

被引:25
作者
Farrell, Daniel J. [1 ]
Sodabanlu, Hassanet [1 ]
Wang, Yunpeng [1 ]
Sugiyama, Masakazu [2 ]
Okada, Yoshitaka [1 ]
机构
[1] Univ Tokyo, RCAST, Meguro Ku, Tokyo 1538504, Japan
[2] Univ Tokyo, Grad Sch Engn, Dept Elect Engn & Informat Syst, Bunkyo Ku, Tokyo 1130032, Japan
关键词
PHOTOVOLTAIC EFFICIENCY ENHANCEMENT; ENERGY CONVERSION;
D O I
10.1038/ncomms9685
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The direct conversion of solar energy to electricity can be broadly separated into two main categories: photovoltaics and thermal photovoltaics, where the former utilizes gradients in electrical potential and the latter thermal gradients. Conventional thermal photovoltaics has a high theoretical efficiency limit (84%) but in practice cannot be easily miniaturized and is limited by the engineering challenges of sustaining large (>1,000 K) temperature gradients. Here we show a hot-carrier-based thermophotonic solar cell, which combines the compact nature of photovoltaic devices with the potential to reach the high-efficiency regime of thermal photovoltaics. In the device, a thermal gradient of 500 K is established by hot electrons, under Stokes illumination, rather than by raising the temperature of the material itself. Under anti-Stokes (sub-bandgap) illumination we observe a thermal gradient of similar to 20 K, which is maintained by steady-state Auger heating of carriers and corresponds to a internal thermal up-conversion efficiency of 30% between the collector and solar cell.
引用
收藏
页数:9
相关论文
共 12 条
[1]   Photovoltaic efficiency enhancement through thermal up-conversion [J].
Ekins-Daukes, NJ ;
Ballard, I ;
Calder, CDJ ;
Barnham, KWJ ;
Hill, G ;
Roberts, JS .
APPLIED PHYSICS LETTERS, 2003, 82 (12) :1974-1976
[2]   A hot-carrier solar cell with optical energy selective contacts [J].
Farrell, D. J. ;
Takeda, Y. ;
Nishikawa, K. ;
Nagashima, T. ;
Motohiro, T. ;
Ekins-Daukes, N. J. .
APPLIED PHYSICS LETTERS, 2011, 99 (11)
[3]  
Green M. A., 2003, P 16 EUR PHOT SOL EN, V51
[4]   Thermophotonics [J].
Harder, NP ;
Green, MA .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2003, 18 (05) :S270-S278
[5]   Theoretical limits of thermophotovoltaic solar energy conversion [J].
Harder, NP ;
Würfel, P .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2003, 18 (05) :S151-S157
[6]   Hot Carriers in Quantum Wells for Photovoltaic Efficiency Enhancement [J].
Hirst, Louise C. ;
Fujii, Hiromasa ;
Wang, Yunpeng ;
Sugiyama, Masakazu ;
Ekins-Daukes, Nicholas J. .
IEEE JOURNAL OF PHOTOVOLTAICS, 2014, 4 (01) :244-252
[7]   Photoluminescence up-conversion in single self-assembled InAs/GaAs quantum dots -: art. no. 207401 [J].
Kammerer, C ;
Cassabois, G ;
Voisin, C ;
Delalande, C ;
Roussignol, P ;
Gérard, JM .
PHYSICAL REVIEW LETTERS, 2001, 87 (20) :207401-1
[8]   Thermalisation rate study of GaSb-based heterostructures by continuous wave photoluminescence and their potential as hot carrier solar cell absorbers [J].
Le Bris, A. ;
Lombez, L. ;
Laribi, S. ;
Boissier, G. ;
Christol, P. ;
Guillemoles, J. -F. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (03) :6225-6232
[9]   Hot carrier solar cells: Achievable efficiency accounting for heat losses in the absorber and through contacts [J].
Le Bris, A. ;
Guillemoles, J. -F. .
APPLIED PHYSICS LETTERS, 2010, 97 (11)
[10]   Slow Electron Cooling in Colloidal Quantum Dots [J].
Pandey, Anshu ;
Guyot-Sionnest, Philippe .
SCIENCE, 2008, 322 (5903) :929-932