A novel patch-based procedure for estimating brain age across adulthood

被引:22
作者
Beheshti, Iman [1 ]
Gravel, Pierre [1 ]
Potvin, Olivier [1 ]
Dieumegarde, Louis [1 ]
Duchesne, Simon [1 ,2 ]
机构
[1] Ctr Rech CERVO, F-3568,2601 Canardiere, Quebec City, PQ G1J 2G3, Canada
[2] Univ Laval, Fac Med, Dept Radiol & Med Nucl, 1050,Ave Med, Quebec City, PQ G1V 0A6, Canada
基金
加拿大健康研究院;
关键词
Patch-based segmentation; Grading; Anatomical MRI; Brain age; MILD COGNITIVE IMPAIRMENT; ALZHEIMERS-DISEASE; INDIVIDUAL BRAINAGE; PREDICTION; GRAY; NEUROPATHOLOGY; CLASSIFICATION; SCHIZOPHRENIA; SEGMENTATION; THICKNESS;
D O I
10.1016/j.neuroimage.2019.05.025
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Aging is associated with structural alterations in many regions of the brain. Monitoring these changes contributes to increasing our understanding of the brain's morphological alterations across its lifespan, and could allow the identification of departures from canonical trajectories. Here, we introduce a novel and unique patch-based grading procedure for estimating a synthetic estimate of cortical aging in cognitively intact individuals. The cortical age metric is computed based on image similarity between an unknown (test) cortical label and known (training) cortical labels using machine learning algorithms. The proposed method was trained on a dataset of 100 cognitively intact individuals aged 19-61 years, within the 31 bilateral cortical labels of the Desikan-KillianyTourville parcellation, then tested on an independent test set of 78 cognitively intact individuals spanning a similar age range. The proposed patch-based framework yielded a R-2 = 0.94, as well as a mean absolute error of 1.66 years, which compared favorably to the literature. These experimental results demonstrate that the proposed patch-based grading framework is a reliable and robust method to estimate brain age from image data, even with a limited training size.
引用
收藏
页码:618 / 624
页数:7
相关论文
共 46 条
  • [1] Biological Brain Age Prediction Using Cortical Thickness Data: A Large Scale Cohort Study
    Aycheh, Habtamu M.
    Seong, Joon-Kyung
    Shin, Jeong-Hyeon
    Na, Duk L.
    Kang, Byungkon
    Seo, Sang W.
    Sohn, Kyung-Ah
    [J]. FRONTIERS IN AGING NEUROSCIENCE, 2018, 10
  • [2] Clinical and Biomarker Changes in Dominantly Inherited Alzheimer's Disease
    Bateman, Randall J.
    Xiong, Chengjie
    Benzinger, Tammie L. S.
    Fagan, Anne M.
    Goate, Alison
    Fox, Nick C.
    Marcus, Daniel S.
    Cairns, Nigel J.
    Xie, Xianyun
    Blazey, Tyler M.
    Holtzman, David M.
    Santacruz, Anna
    Buckles, Virginia
    Oliver, Angela
    Moulder, Krista
    Aisen, Paul S.
    Ghetti, Bernardino
    Klunk, William E.
    McDade, Eric
    Martins, Ralph N.
    Masters, Colin L.
    Mayeux, Richard
    Ringman, John M.
    Rossor, Martin N.
    Schofield, Peter R.
    Sperling, Reisa A.
    Salloway, Stephen
    Morris, John C.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2012, 367 (09) : 795 - 804
  • [3] Early diagnosis of Alzheimer's disease: contribution of structural neuroimaging
    Chetelat, G
    Baron, JC
    [J]. NEUROIMAGE, 2003, 18 (02) : 525 - 541
  • [4] Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker
    Cole, James H.
    Poudel, Rudra P. K.
    Tsagkrasoulis, Dimosthenis
    Caan, Matthan W. A.
    Steves, Claire
    Spector, Tim D.
    Montana, Giovanni
    [J]. NEUROIMAGE, 2017, 163 : 115 - 124
  • [5] An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images
    Coupe, Pierrick
    Yger, Pierre
    Prima, Sylvain
    Hellier, Pierre
    Kervrann, Charles
    Barillot, Christian
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2008, 27 (04) : 425 - 441
  • [6] Detection of Alzheimer's Disease Signature in MR Images Seven Years Before Conversion to Dementia: Toward an Early Individual Prognosis
    Coupe, Pierrick
    Fonov, Vladimir S.
    Bernard, Charlotte
    Zandifar, Azar
    Eskildsen, Simon F.
    Helmer, Catherine
    Manjon, Jose V.
    Amieva, Helene
    Dartigues, Jean-Francois
    Allard, Michele
    Catheline, Gwenaelle
    Collins, D. Louis
    [J]. HUMAN BRAIN MAPPING, 2015, 36 (12) : 4758 - 4770
  • [7] Simultaneous segmentation and grading of anatomical structures for patient's classification: Application to Alzheimer's disease
    Coupe, Pierrick
    Eskildsen, Simon F.
    Manjon, Jose V.
    Fonov, Vladimir S.
    Collins, D. Louis
    [J]. NEUROIMAGE, 2012, 59 (04) : 3736 - 3747
  • [8] Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation
    Coupe, Pierrick
    Manjon, Jose V.
    Fonov, Vladimir
    Pruessner, Jens
    Robles, Montserrat
    Collins, D. Louis
    [J]. NEUROIMAGE, 2011, 54 (02) : 940 - 954
  • [9] Csernansky JG, 2004, ALZ DIS ASSOC DIS, V18, P190
  • [10] Brain Structural Variability due to Aging and Gender in Cognitively Healthy Elders: Results from the Sao Paulo Ageing and Health Study
    Curiati, P. K.
    Tamashiro, J. H.
    Squarzoni, P.
    Duran, F. L. S.
    Santos, L. C.
    Wajngarten, M.
    Leite, C. C.
    Vallada, H.
    Menezes, P. R.
    Scazufca, M.
    Busatto, G. F.
    Alves, T. C. T. F.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2009, 30 (10) : 1850 - 1856