共 18 条
Chiral and Collinear Ordering in a Distorted Triangular Antiferromagnet
被引:29
作者:
Smirnov, A. I.
[1
]
Svistov, L. E.
[1
]
Prozorova, L. A.
[1
]
Zheludev, A.
[2
]
Lumsden, M. D.
[2
]
Ressouche, E.
[3
]
Petrenko, O. A.
[4
]
Nishikawa, K.
[5
]
Kimura, S.
[5
]
Hagiwara, M.
[5
]
Kindo, K.
[6
]
Shapiro, A. Ya.
[7
]
Demianets, L. N.
[7
]
机构:
[1] RAS, PL Kapitza Inst Phys Problems, Moscow 119334, Russia
[2] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA
[3] CEA, DRFMC SPSMS MDN, F-38054 Grenoble, France
[4] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[5] Osaka Univ, Ctr Quantum Sci & Technol Extreme Condit KYOKUGEN, Osaka 5608531, Japan
[6] Univ Tokyo, Inst Solid State Phys, Chiba 2778581, Japan
[7] RAS, AV Shubnikov Crystallog Inst, Moscow 117333, Russia
基金:
英国工程与自然科学研究理事会;
关键词:
LATTICE;
D O I:
10.1103/PhysRevLett.102.037202
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
Magnetization, specific heat, and neutron diffraction measurements are used to map out the entire magnetic phase diagram of KFe(MoO(4))(2). This stacked triangular antiferromagnet is structurally similar to the famous multiferroic system RbFe(MoO(4))(2). Because of an additional small crystallographic distortion, it contains two sets of inequivalent distorted magnetic triangular lattices. As a result, the spin network breaks down into two intercalated yet almost independent magnetic subsystems. One is a collinear antiferromagnet that shows a simple spin-flop behavior in applied magnetic fields. The other is a helimagnet that instead goes through a series of exotic commensurate-incommensurate phase transformations. In the various phases one observes either true three-dimensional or unconventional quasi-two-dimensional ordering.
引用
收藏
页数:4
相关论文