LEAST SQUARES REGRESSION WITH ERRORS IN BOTH VARIABLES: CASE STUDIES

被引:14
作者
de Oliveira, Elcio Cruz [1 ,2 ]
de Aguiar, Paula Fernandes [3 ]
机构
[1] Petrobras Transporte SA, BR-20091060 Rio De Janeiro, RJ, Brazil
[2] Pontificia Univ Catolica Rio de Janeiro, BR-22453900 Rio De Janeiro, RJ, Brazil
[3] Univ Fed Rio de Janeiro, Inst Quim, BR-21945970 Rio De Janeiro, RJ, Brazil
来源
QUIMICA NOVA | 2013年 / 36卷 / 06期
关键词
orthogonal distance regression; least squares regression; error in x and y variables; LINEAR-REGRESSION; CALIBRATION;
D O I
10.1590/S0100-40422013000600025
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Analytical curves are normally obtained from discrete data by least squares regression. The least squares regression of data involving significant error in both x and y values should not be implemented by ordinary least squares (OLS). In this work, the use of orthogonal distance regression (ODR) is discussed as an alternative approach in order to take into account the error in the x variable. Four examples are presented to illustrate deviation between the results from both regression methods. The examples studied show that, in some situations, ODR coefficients must substitute for those of OLS, and, in other situations, the difference is not significant.
引用
收藏
页码:885 / 889
页数:5
相关论文
共 50 条
  • [41] Errors-in-variables beta regression models
    Carrasco, Jalmar M. F.
    Ferrari, Silvia L. P.
    Arellano-Valle, Reinaldo B.
    JOURNAL OF APPLIED STATISTICS, 2014, 41 (07) : 1530 - 1547
  • [42] Multiplicative errors-in-variables beta regression
    Carrasco, Jalmar M. F.
    Ferrari, Silvia L. P.
    Arellano-Valle, Reinaldo B.
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2023, 37 (02) : 249 - 262
  • [43] Evaluating bias in method comparison studies using linear regression with errors in both axes
    Martínez, A
    Riu, J
    Rius, FX
    JOURNAL OF CHEMOMETRICS, 2002, 16 (01) : 41 - 53
  • [44] A fuzzy logistic regression model based on the least squares estimation
    Gao, Yifan
    Lu, Qiujun
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (03) : 3562 - 3579
  • [45] Discriminative Least Squares Regression for Multiclass Classification and Feature Selection
    Xiang, Shiming
    Nie, Feiping
    Meng, Gaofeng
    Pan, Chunhong
    Zhang, Changshui
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (11) : 1738 - 1754
  • [46] An analysis of a least squares regression method for American option pricing
    Clément, E
    Lamberton, D
    Protter, P
    FINANCE AND STOCHASTICS, 2002, 6 (04) : 449 - 471
  • [47] COUPLED LATENT LEAST SQUARES REGRESSION FOR HETEROGENEOUS FACE RECOGNITION
    Cai, Xinyuan.
    Wang, Chunheng.
    Xiao, Baihua.
    Chen, Xue.
    Lv, Zhijian
    Shi, Yanqin
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 2772 - 2776
  • [48] DISCRIMINATIVE MARGINALIZED LEAST SQUARES REGRESSION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Zhang, Yuxiang
    Li, Wei
    Du, Qian
    Sun, Xu
    2019 10TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING - EVOLUTION IN REMOTE SENSING (WHISPERS), 2019,
  • [49] Locality-constrained least squares regression for subspace clustering
    Chen, Yuanyuan
    Yi, Zhang
    KNOWLEDGE-BASED SYSTEMS, 2019, 163 : 51 - 56
  • [50] On function-on-function regression: partial least squares approach
    Beyaztas, Ufuk
    Shang, Han Lin
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2020, 27 (01) : 95 - 114