LEAST SQUARES REGRESSION WITH ERRORS IN BOTH VARIABLES: CASE STUDIES

被引:14
|
作者
de Oliveira, Elcio Cruz [1 ,2 ]
de Aguiar, Paula Fernandes [3 ]
机构
[1] Petrobras Transporte SA, BR-20091060 Rio De Janeiro, RJ, Brazil
[2] Pontificia Univ Catolica Rio de Janeiro, BR-22453900 Rio De Janeiro, RJ, Brazil
[3] Univ Fed Rio de Janeiro, Inst Quim, BR-21945970 Rio De Janeiro, RJ, Brazil
来源
QUIMICA NOVA | 2013年 / 36卷 / 06期
关键词
orthogonal distance regression; least squares regression; error in x and y variables; LINEAR-REGRESSION; CALIBRATION;
D O I
10.1590/S0100-40422013000600025
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Analytical curves are normally obtained from discrete data by least squares regression. The least squares regression of data involving significant error in both x and y values should not be implemented by ordinary least squares (OLS). In this work, the use of orthogonal distance regression (ODR) is discussed as an alternative approach in order to take into account the error in the x variable. Four examples are presented to illustrate deviation between the results from both regression methods. The examples studied show that, in some situations, ODR coefficients must substitute for those of OLS, and, in other situations, the difference is not significant.
引用
收藏
页码:885 / 889
页数:5
相关论文
共 50 条
  • [21] Partial least squares regression on smooth factors
    Goutis, C
    Fearn, T
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (434) : 627 - 632
  • [22] A Generalized Discriminative Least Squares Regression Model
    Yuan, Haoliang
    Zheng, Junjie
    Xu, Fangyuan
    Lai, Loi Lei
    Li, Weiyang
    Zheng, Houqing
    Wang, Zhimin
    PROCEEDINGS 2017 4TH IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2017, : 376 - 381
  • [23] Expectile Regression With Errors-in-Variables
    He, Xiaoxia
    Zhou, Xiaodan
    Li, Chunli
    IEEE ACCESS, 2023, 11 : 63116 - 63125
  • [24] An overview on the shrinkage properties of partial least squares regression
    Nicole Krämer
    Computational Statistics, 2007, 22 : 249 - 273
  • [25] Adaptive weighted least squares regression for subspace clustering
    Bouhlel, Noura
    Feki, Ghada
    Ben Amar, Chokri
    KNOWLEDGE AND INFORMATION SYSTEMS, 2021, 63 (11) : 2883 - 2900
  • [26] On the Equivalence of Linear Discriminant Analysis and Least Squares Regression
    Nie, Feiping
    Chen, Hong
    Xiang, Shiming
    Zhang, Changshui
    Yan, Shuicheng
    Li, Xuelong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 5710 - 5720
  • [27] A weighted least-squares approach to clusterwise regression
    Rainer Schlittgen
    AStA Advances in Statistical Analysis, 2011, 95 : 205 - 217
  • [28] BIAS CORRECTION ON CENSORED LEAST SQUARES REGRESSION MODELS
    Orbe, Jesus
    Nunez-Anton, Vicente
    KYBERNETIKA, 2012, 48 (05) : 1045 - 1063
  • [29] Fuzzy multiple linear least squares regression analysis
    Li, Yingfang
    He, Xingxing
    Liu, Xueqin
    FUZZY SETS AND SYSTEMS, 2023, 459 : 118 - 143
  • [30] Adaptive weighted least squares regression for subspace clustering
    Noura Bouhlel
    Ghada Feki
    Chokri Ben Amar
    Knowledge and Information Systems, 2021, 63 : 2883 - 2900