Caputo-Hadamard fractional differential Cauchy problem in Frechet spaces

被引:3
作者
Abbas, Said [1 ]
Benchohra, Mouffak [2 ]
Berhoun, Farida [2 ]
Henderson, Johnny [3 ]
机构
[1] Tahar Moulay Univ Saida, Lab Math Geometry Anal Control & Applicat, POB 138, Saida 20000, Algeria
[2] Djillali Liabes Univ Sidi Bel Abbes, Math Lab, POB 89, Sidi Bel Abbes 22000, Algeria
[3] Baylor Univ, Dept Math, Waco, TX 76798 USA
关键词
Differential equation; Left-sided mixed Hadamard integral of fractional order; Caputo-Hadamard fractional derivative; Existence; Measure of noncompactness; Frechet space; Fixed point;
D O I
10.1007/s13398-019-00625-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article deals with some existence results of solutions for a class of differential equations involving the Caputo-Hadamard fractional derivative in Frechet spaces. These results are based on a generalization of the classical Darbo fixed point theorem for Frechet spaces associated with the concept of measure of noncompactness. We illustrate our results by an example.
引用
收藏
页码:2335 / 2344
页数:10
相关论文
共 22 条
[1]  
Abbas S, 2018, DEGRUYTER SER NONLIN, V26, P1, DOI 10.1515/9783110553819
[2]  
Abbas S, 2015, DEV MATH, V39, DOI 10.1007/978-3-319-17768-7
[3]  
Abbas S., 2017, COMPUT MATH APPL, DOI [10.1016/j.camwa.2016.04.030, DOI 10.1016/J.CAMWA.2016.04.030]
[4]  
Abbas S., 2017, Adv. Dyn. Syst. Appl, V12, P1
[5]  
Abbas S., 2012, Topics in Fractional Differential Equations, DOI DOI 10.1007/978-1-4614-4036-9
[6]  
Abbas S, 2017, DISCUSS MATH DIFF IN, V37, P187, DOI [10.7151/dmdico.1195, DOI 10.7151/DMDICO.1195]
[7]  
Ahmad B., 2017, Hadamard-type fractional differential equations, inclusions and inequalities
[8]   Some fractional-order one-dimensional semi-linear problems under nonlocal integral boundary conditions [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2016, 110 (01) :159-172
[9]  
[Anonymous], 2015, Advanced Fractional Differential and Integral Equations
[10]   Existence results for fractional order functional differential equations with infinite delay [J].
Benchohra, A. ;
Henderson, J. ;
Ntouyas, S. K. ;
Ouahab, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) :1340-1350