A Cooperative Fusion Architecture for Robust Localization: Application to Autonomous Driving

被引:0
作者
Bresson, Guillaume [1 ]
Rahal, Mohamed-Cherif [1 ]
Gruyer, Dominique [2 ]
Revilloud, Marc [1 ,2 ]
Alsayed, Zayed [1 ,3 ]
机构
[1] Inst VEDECOM, 77 Rue Chantiers, F-78000 Versailles, France
[2] LIVIC, COSYS, IFSTTAR, 25 Allee Marronniers, F-78000 Versailles, France
[3] Inria Paris Rocquencourt, 2 Rue Simone Iff, F-75012 Paris, France
来源
2016 IEEE 19TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC) | 2016年
关键词
MULTISENSOR FUSION;
D O I
暂无
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
The localization of a vehicle is a central task of autonomous driving. Most of the time, it is solved by considering a single algorithm with a few sensors. In this paper, we propose a cooperative fusion architecture based on two main algorithms: a laser-based Simultaneous Localization And Mapping (SLAM) process and a lane detection and tracking approach using a single camera. Both algorithms are designed individually as cooperative fusion processes where other sensors (GPS and proprioceptive information) and dedicated maps are integrated to strengthen the advantages of each system. The whole architecture is formalized around key components (ego-vehicle, roadway, obstacle and environment). A final decision layer, that takes into account the state of each algorithm, allows the system to choose the most appropriate ego-vehicle localization mean based on the current road situation and the environmental context.
引用
收藏
页码:859 / 866
页数:8
相关论文
共 14 条
[1]  
Alsayed Z., 2015, IEEE RSJ INT C INT R
[2]   Improving SLAM with drift integration [J].
Bresson, Guillaume ;
Aufrere, Romuald ;
Chapuis, Roland .
2015 IEEE 18TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, 2015, :2700-2706
[3]   Multisensor fusion for simultaneous localization and map building [J].
Castellanos, JA ;
Neira, J ;
Tardós, JD .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 2001, 17 (06) :908-914
[4]  
Gruyer D., 2003, IEEE INT C ADV ROB
[5]  
Ieng S. S., 2003, IEEE INT VEH S GOLD
[6]   Multisensor data fusion: A review of the state-of-the-art [J].
Khaleghi, Bahador ;
Khamis, Alaa ;
Karray, Fakhreddine O. ;
Razavi, Saiedeh N. .
INFORMATION FUSION, 2013, 14 (01) :28-44
[7]   Multisensor Fusion and Integration: Approaches, Applications, and Future Research Directions [J].
Luo, Ren C. ;
Yih, Chih-Chen ;
Su, Kuo Lan .
IEEE SENSORS JOURNAL, 2002, 2 (02) :107-119
[8]   Low cost IMU-Odometer-GPS ego localization for unusual maneuvers [J].
Ndjeng, A. Ndjeng ;
Gruyer, D. ;
Glaser, S. ;
Larnbert, A. .
INFORMATION FUSION, 2011, 12 (04) :264-274
[9]  
Revilloud M, 2016, IEEE INT CONF ROBOT, P3147, DOI 10.1109/ICRA.2016.7487482
[10]  
Seignez E., 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, P1084