The local index formula in sernifinite Von Neumann algebras I: Spectral flow

被引:56
作者
Carey, AL
Phillips, J [1 ]
Rennie, A
Sukochev, FA
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3P4, Canada
[2] Australian Natl Univ, Inst Math Sci, Canberra, ACT 0200, Australia
[3] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia
[4] Flinders Univ S Australia, Sch Informat & Engn, Bedford Pk, SA 5042, Australia
基金
加拿大自然科学与工程研究理事会; 澳大利亚研究理事会;
关键词
Von Neumann algebra; Fredholm module; cyclic cohomology; Chern character; spectral flow;
D O I
10.1016/j.aim.2005.03.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalise the local index formula of Connes and Moscovici to the case of spectral triples for a *-subalgebra A of a general semifinite von Neumann algebra. In this setting it gives a formula for spectral flow along a path joining an unbounded self-adjoint Breuer-Fredholm operator, affiliated to the von Neumann algebra, to a unitarily equivalent operator. Our proof is novel even in the setting of the original theorem and relies on the introduction of a function valued cocycle which is 'almost' a (b, B)-cocycle in the cyclic cohomology of A. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:451 / 516
页数:66
相关论文
共 30 条
[1]  
Ahlfors L, 1979, COMPLEX ANAL
[2]  
[Anonymous], 1997, CYCLIC COHOMOLOGY NO
[3]  
BENAMEUR MT, TYPE 2 NONCOMMUNTATI, V1
[4]   FREDHOLM THEORIES IN VON NEUMANN ALGEBRAS .2. [J].
BREUER, M .
MATHEMATISCHE ANNALEN, 1969, 180 (04) :313-&
[5]   Spectral flow in Fredholm modules, eta invariants and the JLO cocycle [J].
Carey, A ;
Phillips, J .
K-THEORY, 2004, 31 (02) :135-194
[6]   Spectral flow and Dixmier traces [J].
Carey, A ;
Phillips, J ;
Sukochev, F .
ADVANCES IN MATHEMATICS, 2003, 173 (01) :68-113
[7]   Unbounded Fredholm modules and spectral flow [J].
Carey, A ;
Phillips, J .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (04) :673-718
[8]   The Hochschild class of the Chern character for semifinite spectral triples [J].
Carey, AL ;
Phillips, J ;
Rennie, A ;
Sukochev, FA .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 213 (01) :111-153
[9]   On unbounded p-summable Fredholm modules [J].
Carey, AL ;
Phillips, J ;
Sukochev, FA .
ADVANCES IN MATHEMATICS, 2000, 151 (02) :140-163
[10]  
Coburn L. A., 1971, I HAUTES ETUDES SCI, V40, P69, DOI 10.1007/BF02684694