Semi-infinite cardinal interpolation with multiquadrics and beyond

被引:1
作者
Buhmann, MD [1 ]
机构
[1] Univ Giessen, Lehrstuhl Numer, D-35392 Giessen, Germany
关键词
interpolation; radial basis functions; Wiener-Hopf factorisation; multivariate approximation;
D O I
10.1007/s10444-004-7612-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns the interpolation with radial basis functions on half-spaces, where the centres are multi-integers restricted to half-spaces as well. The existence of suitable Lagrange functions is shown for multiquadrics and inverse multiquadrics radial basis functions, as well as the decay rate and summability of its coefficients. The main technique is a so-called Wiener-Hopf factorisation of the symbol of the radial basis function and the careful study of the smoothness of its 2 pi-periodic factors.
引用
收藏
页码:57 / 80
页数:24
相关论文
共 20 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
[Anonymous], 1959, ILLINOIS J MATH
[3]  
Bejancu A., 2000, E J APPROX THEORY, V6, P465
[4]   ON RADIAL BASIS APPROXIMATION ON PERIODIC GRIDS [J].
BUHMANN, MD ;
MICCHELLI, CA .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1992, 112 :317-334
[5]   MULTIVARIATE CARDINAL INTERPOLATION WITH RADIAL-BASIS FUNCTIONS [J].
BUHMANN, MD .
CONSTRUCTIVE APPROXIMATION, 1990, 6 (03) :225-255
[6]  
Buhmann MD, 2001, ACT NUMERIC, V9, P1, DOI 10.1017/S0962492900000015
[7]   ON QUASI-INTERPOLATION WITH RADIAL BASIS FUNCTIONS [J].
BUHMANN, MD .
JOURNAL OF APPROXIMATION THEORY, 1993, 72 (01) :103-130
[8]   MULTIPLY MONOTONE-FUNCTIONS FOR CARDINAL INTERPOLATION [J].
BUHMANN, MD ;
MICCHELLI, CA .
ADVANCES IN APPLIED MATHEMATICS, 1991, 12 (03) :358-386
[9]   MULTIVARIATE INTERPOLATION IN ODD-DIMENSIONAL EUCLIDEAN SPACES USING MULTIQUADRICS [J].
BUHMANN, MD .
CONSTRUCTIVE APPROXIMATION, 1990, 6 (01) :21-34
[10]  
Buhmann MD., 2003, C MO AP C M, DOI 10.1017/CBO9780511543241