The XFM beamline at the Australian Synchrotron

被引:96
作者
Howard, Daryl L. [1 ]
de Jonge, Martin D. [1 ]
Afshar, Nader [1 ]
Ryan, Chris G. [2 ]
Kirkham, Robin [2 ]
Reinhardt, Juliane [3 ]
Kewish, Cameron M. [1 ,4 ]
McKinlay, Jonathan [1 ]
Walsh, Adam [1 ]
Divitcos, Jim [1 ]
Basten, Noel [1 ]
Adamson, Luke [1 ]
Fiala, Tom [1 ]
Sammut, Letizia [1 ]
Paterson, David J. [1 ]
机构
[1] ANSTO, Australian Synchrotron, 800 Blackburn Rd, Clayton, Vic 3168, Australia
[2] Commonwealth Sci & Ind Res Org, Normanby Rd, Clayton, Vic, Australia
[3] Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[4] La Trobe Univ, La Trobe Inst Mol Sci, Dept Chem & Phys, Bundoora, Vic, Australia
关键词
XRF microprobe; XANES imaging; XRF tomography; ptychography; X-ray fluorescence; X-RAY-FLUORESCENCE; RADIATION-DOSE LIMITS; DESIGN; STATE; PIXE;
D O I
10.1107/S1600577520010152
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The X-ray fluorescence microscopy (XFM) beamline is an in-vacuum undulator-based X-ray fluorescence (XRF) microprobe beamline at the 3 GeV Australian Synchrotron. The beamline delivers hard X-rays in the 4-27 keV energy range, permitting K emission to Cd and L and M emission for all other heavier elements. With a practical low-energy detection cut-off of approximately 1.5 keV, low-Z detection is constrained to Si, with Al detectable under favourable circumstances. The beamline has two scanning stations: a Kirkpatrick-Baez mirror microprobe, which produces a focal spot of 2 mu m x 2 mu m FWHM, and a large-area scanning 'milliprobe', which has the beam size defined by slits. Energy-dispersive detector systems include the Maia 384, Vortex-EM and Vortex-ME3 for XRF measurement, and the EIGER2 X 1 Mpixel array detector for scanning X-ray diffraction microscopy measurements. The beamline uses event-mode data acquisition that eliminates detector system time overheads, and motion control overheads are significantly reduced through the application of an efficient raster scanning algorithm. The minimal overheads, in conjunction with short dwell times per pixel, have allowed XFM to establish techniques such as full spectroscopic XANES fluorescence imaging, XRF tomography, fly scanning ptychography and high-definition XRF imaging over large areas. XFM provides diverse analysis capabilities in the fields of medicine, biology, geology, materials science and cultural heritage. This paper discusses the beamline status, scientific showcases and future upgrades.
引用
收藏
页码:1447 / 1458
页数:12
相关论文
共 54 条
[1]  
Afshar N., 2017, INT C ACC LARG EXP C
[2]   Cell Culture on Silicon Nitride Membranes and Cryopreparation for Synchrotron X-ray Fluorescence Nano-analysis [J].
Bissardon, Caroline ;
Reymond, Solveig ;
Salome, Murielle ;
Andre, Lionel ;
Bayat, Sam ;
Cloetens, Peter ;
Bohic, Sylvain .
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2019, (154)
[3]   Time-resolved X-ray fluorescence analysis of element distribution and concentration in living plants: An example using manganese toxicity in cowpea leaves [J].
Blamey, F. Pax C. ;
Paterson, David J. ;
Walsh, Adam ;
Afshar, Nader ;
McKenna, Brigid A. ;
Cheng, Miaomiao ;
Tang, Caixian ;
Horst, Walter J. ;
Menzies, Neal W. ;
Kopittke, Peter M. .
ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2018, 156 :151-160
[4]   Fast XANES fluorescence imaging using a Maia detector [J].
Boesenberg, Ulrike ;
Ryan, Christopher G. ;
Kirkham, Robin ;
Jahn, Andreas ;
Madsen, Anders ;
Moorhead, Gareth ;
Falkenberg, Gerald ;
Garrevoet, Jan .
JOURNAL OF SYNCHROTRON RADIATION, 2018, 25 :892-898
[5]   The physics design of the Australian synchrotron storage ring [J].
Boldeman, JW ;
Einfeld, D .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2004, 521 (2-3) :306-317
[6]   Multimodal x-ray scatter imaging [J].
Bunk, O. ;
Bech, M. ;
Jensen, T. H. ;
Feidenhans'l, R. ;
Binderup, T. ;
Menzel, A. ;
Pfeiffer, F. .
NEW JOURNAL OF PHYSICS, 2009, 11
[7]   Influence of the overlap parameter on the convergence of the ptychographical iterative engine [J].
Bunk, Oliver ;
Dierolf, Martin ;
Kynde, Soren ;
Johnson, Ian ;
Marti, Othmar ;
Pfeiffer, Franz .
ULTRAMICROSCOPY, 2008, 108 (05) :481-487
[8]   Silicon nitride as a versatile growth substrate for microspectroscopic imaging and mapping of individual cells [J].
Carter, Elizabeth A. ;
Rayner, Benjamin S. ;
McLeod, Andrew I. ;
Wu, Lindsay E. ;
Marshall, Craig P. ;
Levina, Aviva ;
Aitken, Jade B. ;
Witting, Paul K. ;
Lai, Barry ;
Cai, Zhonghou ;
Vogt, Stefan ;
Lee, Yao-Chang ;
Chen, Ching-Iue ;
Tobin, Mark J. ;
Harris, Hugh H. ;
Lay, Peter A. .
MOLECULAR BIOSYSTEMS, 2010, 6 (07) :1316-1322
[9]   Quantitative phase imaging with a scanning transmission x-ray microscope [J].
de Jonge, M. D. ;
Homberger, B. ;
Holzner, C. ;
Legnini, D. ;
Paterson, D. ;
McNulty, I. ;
Jacobsen, C. ;
Vogt, S. .
PHYSICAL REVIEW LETTERS, 2008, 100 (16)
[10]   Spiral scanning X-ray fluorescence computed tomography [J].
de Jonge, Martin D. ;
Kingston, Andrew M. ;
Afshar, Nader ;
Garrevoet, Jan ;
Kirkham, Robin ;
Ruben, Gary ;
Myers, Glenn R. ;
Latham, Shane J. ;
Howard, Daryl L. ;
Paterson, David J. ;
Ryan, Christopher G. ;
McColl, Gawain .
OPTICS EXPRESS, 2017, 25 (19) :23424-23436