Explicit lower bounds for Stokes eigenvalue problems by using nonconforming finite elements

被引:14
作者
Xie, Manting [1 ]
Xie, Hehu [2 ,3 ]
Liu, Xuefeng [4 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, ICMSEC, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[4] Niigata Univ, Grad Sch Sci & Technol, Nishi Ku, 8050 Ikarashi 2 No Cho, Niigata, Niigata 9502181, Japan
基金
日本学术振兴会;
关键词
Stokes eigenvalue problem; Eigenvalue bound; Crouzeix-Raviart element; Enriched Crouzeix-Raviart element; Explicit lower bound; A-POSTERIORI; APPROXIMATION; EIGENMODES; EQUATIONS; DOMAIN;
D O I
10.1007/s13160-017-0291-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An algorithm is proposed to give explicit lower bounds of the Stokes eigenvalues by utilizing two nonconforming finite element methods: Crouzeix-Raviart (CR) element and enriched Crouzeix-Raviart (ECR) element. Compared with the existing literatures which give lower eigenvalue bounds under the asymptotic condition that the mesh size is "small enough", the proposed algorithm in this paper drops the asymptotic condition and provide explicit lower bounds even for a rough mesh. Numerical experiments are also performed to validate the theoretical results.
引用
收藏
页码:335 / 354
页数:20
相关论文
共 27 条
[1]  
Babuka I., 1991, Finite Element Methods (Part 1), Handbook of Numerical Analysis,, V2, P640
[2]   FINITE ELEMENT-GALERKIN APPROXIMATION OF THE EIGENVALUES AND EIGENVECTORS OF SELFADJOINT PROBLEMS [J].
BABUSKA, I ;
OSBORN, JE .
MATHEMATICS OF COMPUTATION, 1989, 52 (186) :275-297
[3]   GENERALIZED STOKES EIGENFUNCTIONS - A NEW TRIAL BASIS FOR THE SOLUTION OF INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
BATCHO, PF ;
KARNIADAKIS, GE .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 115 (01) :121-146
[4]  
Brenner S., 2007, The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics
[5]  
CHATELIN F, 1983, Spectral Approximations of Linear Operators
[6]  
Ciarlet P., 2002, Classics in Appl. Math., V40
[7]  
CROUZEIX M, 1973, REV FR AUTOMAT INFOR, V7, P33
[8]   THE DIRICHLET PROBLEM FOR THE STOKES SYSTEM ON LIPSCHITZ-DOMAINS [J].
FABES, EB ;
KENIG, CE ;
VERCHOTA, GC .
DUKE MATHEMATICAL JOURNAL, 1988, 57 (03) :769-793
[9]   Lower Bounds for Eigenvalues of Elliptic Operators: By Nonconforming Finite Element Methods [J].
Hu, Jun ;
Huang, Yunqing ;
Lin, Qun .
JOURNAL OF SCIENTIFIC COMPUTING, 2014, 61 (01) :196-221
[10]   A posterior error analysis for the nonconforming discretization of Stokes eigenvalue problem [J].
Jia, Shang Hui ;
Luo, Fu Sheng ;
Xie, He Hu .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (06) :949-967