A three-dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM2.5 prediction

被引:65
作者
Li, Z. [1 ,2 ]
Zang, Z. [2 ]
Li, Q. B. [2 ,3 ]
Chao, Y. [2 ,5 ]
Chen, D. [2 ]
Ye, Z. [2 ]
Liu, Y. [4 ]
Liou, K. N. [2 ,3 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA
[2] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA
[3] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA USA
[4] Brookhaven Natl Lab, Upton, NY 11973 USA
[5] Remote Sensing Solut Inc, Pasadena, CA USA
基金
美国国家航空航天局;
关键词
MODEL; RETRIEVALS; STATISTICS; CHEMISTRY; MODULE; OZONE;
D O I
10.5194/acp-13-4265-2013
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A three-dimensional variational data assimilation (3-DVAR) algorithm for aerosols in a WRF/Chem model is presented. The WRF/Chem model uses the MOSAIC (Model for Simulating Aerosol Interactions and Chemistry) scheme, which explicitly treats eight major species (elemental/black carbon, organic carbon, nitrate, sulfate, chloride, ammonium, sodium and the sum of other inorganic, inert mineral and metal species) and represents size distributions using a sectional method with four size bins. The 3-DVAR scheme is formulated to take advantage of the MOSAIC scheme in providing comprehensive analyses of species concentrations and size distributions. To treat the large number of state variables associated with the MOSAIC scheme, this 3-DVAR algorithm first determines the analysis increments of the total mass concentrations of the eight species, defined as the sum of the mass concentrations across all size bins, and then distributes the analysis increments over four size bins according to the background error variances. The number concentrations for each size bin are adjusted based on the ratios between the mass and number concentrations of the background state. Additional flexibility is incorporated to further lump the eight mass concentrations, and five lumped species are used in the application presented. The system is evaluated using the analysis and prediction of PM2.5 in the Los Angeles basin during the CalNex 2010 field experiment, with assimilation of surface PM2.5 and speciated concentration observations. The results demonstrate that the data assimilation significantly reduces the errors in comparison with a simulation without data assimilation and improved forecasts of the concentrations of PM2.5 as well as individual species for up to 24 h. Some implementation difficulties and limitations of the system are discussed.
引用
收藏
页码:4265 / 4278
页数:14
相关论文
共 46 条
[1]   A regional scale chemical transport modeling of Asian aerosols with data assimilation of AOD observations using optimal interpolation technique [J].
Adhikary, B. ;
Kulkarni, S. ;
Dallura, A. ;
Tang, Y. ;
Chai, T. ;
Leung, L. R. ;
Qian, Y. ;
Chung, C. E. ;
Ramanathan, V. ;
Carmichael, G. R. .
ATMOSPHERIC ENVIRONMENT, 2008, 42 (37) :8600-8615
[2]  
[Anonymous], 2006, ATMOS CHEM PHYS
[3]  
[Anonymous], 2003, ATMOSPHERIC MODELING
[4]  
[Anonymous], 1991, ATMOSPHERIC DATA ANA
[5]   A review of forecast error covariance statistics in atmospheric variational data assimilation. I: Characteristics and measurements of forecast error covariances [J].
Bannister, R. N. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2008, 134 (637) :1951-1970
[6]   MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models [J].
Bauer, S. E. ;
Wright, D. L. ;
Koch, D. ;
Lewis, E. R. ;
McGraw, R. ;
Chang, L. -S. ;
Schwartz, S. E. ;
Ruedy, R. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (20) :6003-6035
[7]   Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data assimilation [J].
Benedetti, A. ;
Morcrette, J. -J. ;
Boucher, O. ;
Dethof, A. ;
Engelen, R. J. ;
Fisher, M. ;
Flentje, H. ;
Huneeus, N. ;
Jones, L. ;
Kaiser, J. W. ;
Kinne, S. ;
Mangold, A. ;
Razinger, M. ;
Simmons, A. J. ;
Suttie, M. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2009, 114
[8]   Assimilation of MODIS cloud optical depths in the ECMWF model [J].
Benedetti, Angela ;
Janiskova, Marta .
MONTHLY WEATHER REVIEW, 2008, 136 (05) :1727-1746
[9]   Background error statistics for aerosols [J].
Benedetti, Angela ;
Fisher, Michael .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2007, 133 (623) :391-405
[10]   Models-3 community multiscale air quality (CMAQ) model aerosol component - 1. Model description [J].
Binkowski, FS ;
Roselle, SJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D6)