ON THE CAUCHY PROBLEM FOR THE TWO-COMPONENT DULLIN-GOTTWALD-HOLM SYSTEM

被引:17
作者
Chen, Yong [1 ,2 ]
Gao, Hongjun [1 ,3 ]
Liu, Yue [4 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
[2] Jiangxi Normal Univ, Dept Math, Nanchang 330022, Peoples R China
[3] Nanjing Normal Univ, Jiangsu Key Lab NSLSCS, Nanjing 210046, Jiangsu, Peoples R China
[4] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA
基金
美国国家科学基金会;
关键词
Two-component Dullin-Gottwald-Holm system; regularization; wave-breaking; global solutions; solitary-wave solutions; GLOBAL WELL-POSEDNESS; SHALLOW-WATER EQUATION; BLOW-UP PHENOMENA; BREAKING WAVES; WEAK SOLUTIONS; EXISTENCE; KDV;
D O I
10.3934/dcds.2013.33.3407
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Considered herein is the initial-value problem for a two-component Dullin-Gottwald-Holm system. The local well-posedness in the Sobolev space H-s(R) with s > 3/2 is established by using the bi-linear estimate technique to the approximate solutions. Then the wave-breaking criteria and global solutions are determined in H-s(R), s > 3/2. Finally, existence of the solitary-wave solutions is demonstrated.
引用
收藏
页码:3407 / 3441
页数:35
相关论文
共 47 条
  • [1] [Anonymous], CONT MATH
  • [2] Dispersion estimates for third order equations in two dimensions
    Ben-Artzi, M
    Koch, H
    Saut, JC
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (11-12) : 1943 - 1974
  • [3] Decay and analyticity of solitary waves
    Bona, JL
    Li, YA
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (05): : 377 - 430
  • [4] INITIAL-VALUE PROBLEM FOR KORTEWEG-DEVRIES EQUATION
    BONA, JL
    SMITH, R
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1975, 278 (1287): : 555 - 601
  • [5] Bourgain J., 1993, Geom. Funct. Anal., V3, P107
  • [6] Bourgain J., 1993, The KdV equations, GAGA, V3, P209, DOI 10.1007/BF01895688
  • [7] LONG WAVES IN RUNNING WATER
    BURNS, JC
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1953, 49 (04): : 695 - 706
  • [8] Byers P. J., 2003, THESIS U NOTRE DAME
  • [9] Global well-posedness for Schrodinger equations with derivative
    Colliander, J
    Keel, M
    Staffilani, G
    Takaoka, H
    Tao, T
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (03) : 649 - 669
  • [10] Sharp global well-posedness for KDV and modified KDV on R and T
    Colliander, J
    Keel, M
    Staffilani, G
    Takaoka, H
    Tao, T
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (03) : 705 - 749