Live-cell imaging of cell signaling using genetically encoded fluorescent reporters

被引:56
作者
Ni, Qiang [1 ]
Mehta, Sohum [1 ]
Zhang, Jin [1 ,2 ]
机构
[1] Univ Calif San Diego, Dept Pharmacol, 9500 Gilman Dr,BRF 2 1120, La Jolla, CA 92093 USA
[2] Johns Hopkins Sch Med, Dept Pharmacol & Mol Sci, Baltimore, MD USA
关键词
biosensor; fluorescent protein; FRET; GPCR signaling; neuronal activity; PROTEIN-PROTEIN INTERACTIONS; IN-VIVO; CYCLIC-AMP; PHOSPHOINOSITIDE DYNAMICS; NEURAL CIRCUITS; ENERGY-TRANSFER; LIVING CELLS; GREEN; BIOSENSORS; BRIGHT;
D O I
10.1111/febs.14134
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Synergistic advances in fluorescent protein engineering and live-cell imaging techniques in recent years have fueled the concurrent development and application of genetically encoded fluorescent reporters that are tailored for tracking signaling dynamics in living systems over multiple length and time scales. These biosensors are uniquely suited for this challenging task, owing to their specificity, sensitivity, and versatility, as well as to the noninvasive and nondestructive nature of fluorescence and the power of genetic encoding. Over the past 10 years, a growing number of fluorescent reporters have been developed for tracking a wide range of biological signals in living cells and animals, including second messenger and metabolite dynamics, enzyme activation and activity, and cell cycle progression and neuronal activity. Many of these biosensors are gaining wide use and are proving to be indispensable for unraveling the complex biological functions of individual signaling molecules in their native environment, the living cell, shedding new light on the structural and molecular underpinnings of cell signaling. In this review, we highlight recent advances in protein engineering that are likely to help expand and improve the design and application of these valuable tools. We then turn our focus to specific examples of live-cell imaging using genetically encoded fluorescent reporters as an important platform for advancing our understanding of G protein-coupled receptor signaling and neuronal activity.
引用
收藏
页码:203 / 219
页数:17
相关论文
共 127 条
[1]   FLUORESCENCE RATIO IMAGING OF CYCLIC-AMP IN SINGLE CELLS [J].
ADAMS, SR ;
HAROOTUNIAN, AT ;
BUECHLER, YJ ;
TAYLOR, SS ;
TSIEN, RY .
NATURE, 1991, 349 (6311) :694-697
[2]  
Ahrens MB, 2013, NAT METHODS, V10, P413, DOI [10.1038/nmeth.2434, 10.1038/NMETH.2434]
[3]   Dimerization-Dependent Green and Yellow Fluorescent Proteins [J].
Alford, Spencer C. ;
Ding, Yidan ;
Simmen, Thomas ;
Campbell, Robert E. .
ACS SYNTHETIC BIOLOGY, 2012, 1 (12) :569-575
[4]   A Fluorogenic Red Fluorescent Protein Heterodimer [J].
Alford, Spencer C. ;
Abdelfattah, Ahmed S. ;
Ding, Yidan ;
Campbell, Robert E. .
CHEMISTRY & BIOLOGY, 2012, 19 (03) :353-360
[5]   Signal propagation from membrane messengers to nuclear effectors revealed by reporters of phosphoinositide dynamics and Akt activity [J].
Ananthanarayanan, B ;
Ni, Q ;
Zhang, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (42) :15081-15086
[6]   Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting [J].
Ando, R ;
Mizuno, H ;
Miyawaki, A .
SCIENCE, 2004, 306 (5700) :1370-1373
[7]   Bacterial phytochromes: More than meets the light [J].
Auldridge, Michele E. ;
Forest, Katrina T. .
CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2011, 46 (01) :67-88
[8]   Circular permutation and receptor insertion within green fluorescent proteins [J].
Baird, GS ;
Zacharias, DA ;
Tsien, RY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (20) :11241-11246
[9]   A Guide to Fluorescent Protein FRET Pairs [J].
Bajar, Bryce T. ;
Wang, Emily S. ;
Zhang, Shu ;
Lin, Michael Z. ;
Chu, Jun .
SENSORS, 2016, 16 (09)
[10]   Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells [J].
Baker, B. J. ;
Lee, H. ;
Pieribone, V. A. ;
Cohen, L. B. ;
Isacoff, E. Y. ;
Knopfel, T. ;
Kosmidis, E. K. .
JOURNAL OF NEUROSCIENCE METHODS, 2007, 161 (01) :32-38