Performance of fiber-optic Raman probes for analysis of gas mixtures in enclosures

被引:13
|
作者
Berg, JM [1 ]
Rau, KC
Veirs, DK
Worl, LA
McFarlan, JT
Hill, DD
机构
[1] Los Alamos Natl Lab, Div Nucl Mat Technol, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Engn Sci & Applicat Div, Los Alamos, NM 87545 USA
关键词
Raman; fiber-optic probe; gas analysis;
D O I
10.1366/0003702021954250
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The feasibility of using fiber-optic Raman probes to identify and quantify gases in enclosures is investigated by measuring and comparing detection thresholds using several probe and enclosure designs. Unfiltered, non-imaging, fiber-optic probes are shown to achieve lower detection thresholds than a filtered, imaging, fiberoptic probe, provided that light scattering within the sample enclosure is minimized and provided that a window is not used between the probe and the analyte gas. Achievable thresholds for hydrogen, oxygen, nitrogen, carbon monoxide, and methane in gas mixtures are demonstrated to be below 1 kPa with ten seconds signal acquisition and 0.1 kPa with twenty minutes signal acquisition with the use of 0.4 W of 532-nm excitation. Ambient carbon dioxide in air (.03 kPa) is shown to be detectable in a twenty minute acquisition, and ambient water vapor is well above the detection threshold. Background signals generated within the optical fibers remain the principal factors limiting detection thresholds. Factors affecting the magnitudes of these signals reaching the detector are investigated and discussed. A flat piece of light-absorbing colored glass tilted to direct reflected light away from the fiber-optic probe performs well as a beam stop to reduce background signal in a simple, cylindrical sample enclosure.
引用
收藏
页码:83 / 90
页数:8
相关论文
共 50 条
  • [41] Stimulated raman scattering in fiber-optic communication lines
    V. Yu. Golyshev
    E. A. Zhukov
    I. É. Samartsev
    D. G. Slepov
    Technical Physics, 2004, 49 : 135 - 137
  • [42] Stimulated Raman scattering in fiber-optic communication lines
    Golyshev, VY
    Zhukov, EA
    Samartsev, IÉ
    Slepov, DG
    TECHNICAL PHYSICS, 2004, 49 (01) : 135 - 137
  • [43] Multivariate Reference Technique for Quantitative Analysis of Fiber-Optic Tissue Raman Spectroscopy
    Bergholt, Mads Sylvest
    Duraipandian, Shiyamala
    Zheng, Wei
    Huang, Zhiwei
    ANALYTICAL CHEMISTRY, 2013, 85 (23) : 11297 - 11303
  • [44] Wavelength dispersion analysis on fiber-optic Raman distributed temperature sensor system
    Wang W.
    Chang J.
    Lv G.
    Wang Z.
    Liu Z.
    Luo S.
    Jiang S.
    Liu X.
    Liu X.
    Liu Y.
    Photonic Sensors, 2013, 3 (03) : 256 - 261
  • [45] Fiber-Optic Volumetric Liquid and Gas Flowmeter
    Yu. N. Kul'chin
    V. P. Vasil'ev
    I. A. Polei
    Measurement Techniques, 2003, 46 : 357 - 359
  • [46] Fiber-optic volumetric liquid and gas flowmeter
    Kul'chin, YN
    Vasil'ev, VP
    Polei, IA
    MEASUREMENT TECHNIQUES, 2003, 46 (04) : 357 - 359
  • [47] Fiber-optic photoacoustic gas sensing: a review
    Zhao, Xinyu
    Qi, Hongchao
    Xu, Yufu
    Li, Chenxi
    Guo, Min
    Chen, Ke
    APPLIED SPECTROSCOPY REVIEWS, 2025, 60 (01) : 1 - 29
  • [48] Fiber-Optic Sensors for the Exploration of Oil and Gas
    Yamate, Tsutomu
    2009 14TH OPTOELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC 2009), 2009, : 253 - 254
  • [49] Fiber-optic probes for real-time pH monitoring
    Elsherif, Mohamed
    Alam, Fahad
    Salih, Ahmed E.
    Wang, Xinyu
    Corridon, Peter R.
    Ramadi, Khalil B.
    Butt, Haider
    SENSORS & DIAGNOSTICS, 2024, 3 (05): : 827 - 838
  • [50] Fiber-optic probes enable cancer detection with FTIR spectroscopy
    Mackanos, Mark A.
    Contag, Christopher H.
    TRENDS IN BIOTECHNOLOGY, 2010, 28 (06) : 317 - 323