Hierarchically Structured Ultraporous Iridium-Based Materials: A Novel Catalyst Architecture for Proton Exchange Membrane Water Electrolyzers

被引:115
作者
Faustini, Marco [1 ]
Giraud, Marion [2 ]
Jones, Deborah [3 ]
Roziere, Jacques [3 ]
Dupont, Marc [3 ]
Porter, Thomas R. [4 ]
Nowak, Sophie [2 ]
Bahri, Mounib [5 ]
Ersen, Ovidiu [5 ]
Sanchez, Clement [1 ]
Boissiere, Cedric [1 ]
Tard, Cedric [6 ]
Peron, Jennifer [2 ]
机构
[1] Sorbonne Univ, Coll France, CNRS, UMR 7574,Chim Matiere Condensee Paris, F-75005 Paris, France
[2] Univ Paris Diderot, Sorbonne Paris Cite, UMR CNRS 7086, ITODYS, 15 Rue Jean Antoine de Baif, F-75205 Paris 13, France
[3] Univ Montpellier, UMR 5253, Interfaces & Mat Energy, ICGM Aggregates, F-34095 Montpellier, France
[4] Univ Paris Diderot, Sorbonne Paris Cite, Lab Electrochim Mol, Unite Mixte Rech Univ CNRS 7591, Batiment Lavoisier,15 Rue Jean de Baif, F-75205 Paris 13, France
[5] Univ Strasbourg, IPCMS UMR 7504 CNRS, 23 Rue Loess,BP 43, F-67034 Strasbourg 2, France
[6] Univ Paris Saclay, Ecole Polytech, CNRS, LCM, F-91128 Palaiseau, France
关键词
anodes; electrolysis; hydrogen; nanoneedles; porous catalysts; OXYGEN EVOLUTION REACTION; ELECTRONIC-STRUCTURE; COMPOSITE MEMBRANE; METAL-OXIDES; IRO2; ELECTROCATALYSIS; PERFORMANCE; OXIDATION; HYDROGEN; BEHAVIOR;
D O I
10.1002/aenm.201802136
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Iridium oxide is the gold-standard catalyst for the oxygen evolution reaction (OER) in acidic media due to its unmatched activity and stability. Here, a new catalyst architecture comprising a nanoneedle network of iridium-containing oxides assembled into macroporous micrometric particles with approximate to 75% of porosity is reported. The rationally designed porous hierarchical structure optimizes the accessibility of reactants and products to the surface of the nanoparticles and maximizes catalyst activity. The materials are easily prepared from aqueous solutions by an industrially viable spray-drying route through an evaporation self-assembly mechanism. The versatility of the process enables the preparation of mixed oxides with low iridium content, particles with tunable crystallinity, and various iridium surface species with high electrochemical activity. Highly porous Ir0.7Ru0.3O2 outperforms commercial iridium oxide. These materials also represent an ideal platform to assess the reactivity of the iridium and oxygen species involved in the oxygen evolution reaction. Furthermore, it is demonstrated that these highly porous particles are optimal building blocks to be integrated into catalyst layers, without the drawbacks associated with the use of discrete nanoparticles. Fresh- and end-of-test membrane-electrode assemblies' characterization shows that their particular architecture is preserved upon catalyst layer preparation and after operation in a proton-exchange membrane electrolysis cell.
引用
收藏
页数:11
相关论文
共 46 条
[1]   Iridium Oxide for the Oxygen Evolution Reaction: Correlation between Particle Size, Morphology, and the Surface Hydroxo Layer from Operando XAS [J].
Abbott, Daniel F. ;
Lebedev, Dmitry ;
Waltar, Kay ;
Povia, Mauro ;
Nachtegaal, Maarten ;
Fabbri, Emiliana ;
Coperet, Christophe ;
Schmidt, Thomas J. .
CHEMISTRY OF MATERIALS, 2016, 28 (18) :6591-6604
[2]   EFFECT OF PREPARATION ON THE SURFACE AND ELECTROCATALYTIC PROPERTIES OF RUO2 + IRO2 MIXED-OXIDE ELECTRODES [J].
ANGELINETTA, C ;
TRASATTI, S ;
ATANASOSKA, LD ;
MINEVSKI, ZS ;
ATANASOSKI, RT .
MATERIALS CHEMISTRY AND PHYSICS, 1989, 22 (1-2) :231-247
[3]   High temperature operation of a composite membrane-based solid polymer electrolyte water electrolyser [J].
Antonucci, V. ;
Di Blasi, A. ;
Baglio, V. ;
Ornelas, R. ;
Matteucci, F. ;
Ledesma-Garcia, J. ;
Arriaga, L. G. ;
Arico, A. S. .
ELECTROCHIMICA ACTA, 2008, 53 (24) :7350-7356
[4]   Review-Identifying Critical Gaps for Polymer Electrolyte Water Electrolysis Development [J].
Babic, Ugljesa ;
Suermann, Michel ;
Buechi, Felix N. ;
Gubler, Lorenz ;
Schmidt, Thomas J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (04) :F387-F399
[5]   Solid Polymer Electrolyte Water Electrolyser Based on Nafion-TiO2 Composite Membrane for High Temperature Operation [J].
Baglio, V. ;
Ornelas, R. ;
Matteucci, F. ;
Martina, F. ;
Ciccarella, G. ;
Zama, I. ;
Arriaga, L. G. ;
Antonucci, V. ;
Arico, A. S. .
FUEL CELLS, 2009, 9 (03) :247-252
[6]   An alternative approach to selective sea water oxidation for hydrogen production [J].
Balaji, Rengarajan ;
Balasingam, Suresh Kannan ;
Lakshmi, Jothinathan ;
Senthil, Natarajan ;
Vasudevan, Subramanyan ;
Sozhan, Ganapathy ;
Shukla, Ashok Kumar ;
Ravichandran, Subbiah .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (08) :1700-1702
[7]   FORMATION, DISSOCIATION AND EXPANSION BEHAVIOR OF PLATINUM GROUP METAL-OXIDES (PDO, RUO2, IRO2) [J].
BAYER, G ;
WIEDEMANN, HG .
THERMOCHIMICA ACTA, 1975, 11 (01) :79-88
[8]   Analysis of Voltage Losses in PEM Water Electrolyzers with Low Platinum Group Metal Loadings [J].
Bernt, Maximilian ;
Siebel, Armin ;
Gasteiger, Hubert A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (05) :F305-F314
[9]  
Bessarabov D, 2016, PEM Electrolysis for Hydrogen Production: Principles and Applications, DOI DOI 10.1201/B19096
[10]  
Blasco-Ahicart M, 2018, NAT CHEM, V10, P24, DOI [10.1038/NCHEM.2874, 10.1038/nchem.2874]