Spatial and Spectral Joint Super-Resolution Using Convolutional Neural Network

被引:107
作者
Mei, Shaohui [1 ]
Jiang, Ruituo [1 ]
Li, Xu [1 ]
Du, Qian [2 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Xian 710129, Peoples R China
[2] Mississippi State Univ, Dept Elect & Comp Engn, Starkville, MS 39762 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2020年 / 58卷 / 07期
基金
中国国家自然科学基金;
关键词
Spatial resolution; Image reconstruction; Hyperspectral imaging; Signal resolution; Convolutional neural network (CNN); hyperspectral image (HSI); multispectral image (MSI); spatial-spectral; super-resolution (SR);
D O I
10.1109/TGRS.2020.2964288
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Many applications have benefited from the images with both high spatial and spectral resolution, such as mineralogy and surveillance. However, it is difficult to acquire such images due to the limitation of sensor technologies. Recently, super-resolution (SR) techniques have been proposed to improve the spatial or spectral resolution of images, e.g., improving the spatial resolution of hyperspectral images (HSIs) or improving spectral resolution of color images (reconstructing HSIs from RGB inputs). However, none of the researches attempted to improve both spatial and spectral resolution together. In this article, these two types of resolution are jointly improved using convolutional neural network (CNN). Specifically, two kinds of CNN-based SR are conducted, including a simultaneous spatial-spectral joint SR (SimSSJSR) that conducts SR in spectral and spatial domain simultaneously and a separated spatial-spectral joint SR (SepSSJSR) that considers spectral and spatial SR sequentially. In the proposed SimSSJSR, a full 3-D CNN is constructed to learn an end-to-end mapping between a low spatial-resolution mulitspectral image (LR-MSI) and the corresponding high spatial-resolution HSI (HR-HSI). In the proposed SepSSJSR, a spatial SR network and a spectral SR network are designed separately, and thus two different frameworks are proposed for SepSSJSR, namely SepSSJSR1 and SepSSJSR2, according to the order that spatial SR and spectral SR are applied. Furthermore, the least absolute deviation, instead of mean square error (MSE) in traditional SR networks, is chosen as the loss function for the proposed networks. Experimental results over simulated images from different sensors demonstrated that the proposed SepSSJSR1 is most effective to improve spatial and spectral resolution of MSIs sequentially by conducting spatial SR prior to spectral SR. In addition, validation on real Landsat images also indicates that the proposed SSJSR techniques can make full use of available MSIs for high-resolution-based analysis or applications.
引用
收藏
页码:4590 / 4603
页数:14
相关论文
共 33 条
[1]   In Defense of Shallow Learned Spectral Reconstruction from RGB Images [J].
Aeschbacher, Jonas ;
Wu, Jiqing ;
Timofte, Radu .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, :471-479
[2]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[3]   Hyperspectral Recovery from RGB Images using Gaussian Processes [J].
Akhtar, Naveed ;
Mian, Ajmal .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (01) :100-113
[4]   Adversarial Networks for Spatial Context-Aware Spectral Image Reconstruction from RGB [J].
Alvarez-Gila, Aitor ;
van de Weijer, Joost ;
Garrote, Estibaliz .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, :480-490
[5]   Sparse Recovery of Hyperspectral Signal from Natural RGB Images [J].
Arad, Boaz ;
Ben-Shahar, Ohad .
COMPUTER VISION - ECCV 2016, PT VII, 2016, 9911 :19-34
[6]  
Chen C, 2009, PAC ASIA J ASSOC INF, V1, P1
[7]   Accelerating the Super-Resolution Convolutional Neural Network [J].
Dong, Chao ;
Loy, Chen Change ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :391-407
[8]   Learning a Deep Convolutional Network for Image Super-Resolution [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 :184-199
[9]  
Dong WS, 2009, IEEE IMAGE PROC, P349, DOI 10.1109/ICIP.2009.5414423
[10]  
Galliani S., 2017, Learned Spectral SuperResolution