Gene regulatory network inference using out of equilibrium statistical mechanics

被引:12
作者
Benecke, Arndt [1 ,2 ]
机构
[1] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
[2] Univ Lille 1, CNRS, Inst Rech Interdisciplinaire, USR3078, F-59655 Villeneuve Dascq, France
来源
HFSP JOURNAL | 2008年 / 2卷 / 04期
关键词
D O I
10.2976/1.2957743
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Spatiotemporal control of gene expression is fundamental to multicellular life. Despite prodigious efforts, the encoding of gene expression regulation in eukaryotes is not understood. Gene expression analyses nourish the hope to reverse engineer effector-target gene networks using inference techniques. Inference from noisy and circumstantial data relies on using robust models with few parameters for the underlying mechanisms. However, a systematic path to gene regulatory network reverse engineering from functional genomics data is still impeded by fundamental problems. Recently, Johannes Berg from the Theoretical Physics Institute of Cologne University has made two remarkable contributions that significantly advance the gene regulatory network inference problem. Berg, who uses gene expression data from yeast, has demonstrated a nonequilibrium regime for mRNA concentration dynamics and was able to map the gene regulatory process upon simple stochastic systems driven out of equilibrium. The impact of his demonstration is twofold, affecting both the understanding of the operational constraints under which transcription occurs and the capacity to extract relevant information from highly time-resolved expression data. Berg has used his observation to predict target genes of selected transcription factors, and thereby, in principle, demonstrated applicability of his out of equilibrium statistical mechanics approach to the gene network inference problem.
引用
收藏
页码:183 / 188
页数:6
相关论文
共 21 条
[1]  
ADAMS D, 1979, HITCHHIKERS GUIDE GA, P96105
[2]   DNA replication timing data corroborate in silico human replication origin predictions [J].
Audit, B. ;
Nicolay, S. ;
Huvet, M. ;
Touchon, M. ;
d'Aubenton-Carafa, Y. ;
Thermes, C. ;
Arneodo, A. .
PHYSICAL REVIEW LETTERS, 2007, 99 (24)
[3]   The transcriptional regulatory code of eukaryotic cells insights from genome-wide analysis of chromatin organization and transcription factor binding [J].
Barrera, Leah O. ;
Ren, Bing .
CURRENT OPINION IN CELL BIOLOGY, 2006, 18 (03) :291-298
[4]  
Benecke Arndt, 2003, ComPlexUs, V1, P65, DOI 10.1159/000070463
[5]   Immunohistochemical expression of p16INK4a is predictive of HR-HPV infection in cervical low-grade lesions [J].
Benevolo, M ;
Mottolese, M ;
Marandino, F ;
Vocaturo, G ;
Sindico, R ;
Piperno, G ;
Mariani, L ;
Sperduti, I ;
Canalini, P ;
Donnorso, RP ;
Vocaturo, A .
MODERN PATHOLOGY, 2006, 19 (03) :384-391
[6]   Dynamics of gene expression and the regulatory inference problem [J].
Berg, J. .
EPL, 2008, 82 (02)
[7]   Out-of-equilibrium dynamics of gene expression and the Jarzynski equality [J].
Berg, Johannes .
PHYSICAL REVIEW LETTERS, 2008, 100 (18)
[8]   Learning by message passing in networks of discrete synapses [J].
Braunstein, A ;
Zecchina, R .
PHYSICAL REVIEW LETTERS, 2006, 96 (03)
[9]  
CASTIGLIONE P, 2008, CHAOS COARSE GRAININ, P96105
[10]   Stem cell transcriptome profiling via massive-scale mRNA sequencing [J].
Cloonan, Nicole ;
Forrest, Alistair R. R. ;
Kolle, Gabriel ;
Gardiner, Brooke B. A. ;
Faulkner, Geoffrey J. ;
Brown, Mellissa K. ;
Taylor, Darrin F. ;
Steptoe, Anita L. ;
Wani, Shivangi ;
Bethel, Graeme ;
Robertson, Alan J. ;
Perkins, Andrew C. ;
Bruce, Stephen J. ;
Lee, Clarence C. ;
Ranade, Swati S. ;
Peckham, Heather E. ;
Manning, Jonathan M. ;
McKernan, Kevin J. ;
Grimmond, Sean M. .
NATURE METHODS, 2008, 5 (07) :613-619