EFFECTS OF Mg, Ca, AND Fe(II) DOPING ON THE KAOLINITE (001) SURFACE WITH H2O ADSORPTION

被引:15
|
作者
He, Man-Chao [1 ]
Zhao, Jian [1 ]
机构
[1] China Univ Min & Technol, State Key Lab Geomech & Deep Underground Engn, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Adsorption; First-principles Calculations; Kaolinite; Penetration; Point Defect; INITIO; DYNAMICS; WATER;
D O I
10.1346/CCMN.2012.0600309
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Kaolinite is often a cause of deformation in soft-rock tunnel engineering, leading to safety problems. The mechanism of the deformation is closely related to the interaction between kaolinite and water molecules. Because kaolinite has multiple defects, the effects of Mg, Ca, and Fe(II) doping on the atomic structure of the kaolinite (001) surface, and the subsequent adsorption and penetration of H2O into the interlayer, were studied systematically using density-functional theory. The results showed that for the Mg-, Ca-, and Fe(II)-doped kaolinites (001), the surface relaxation around the doping layer changed from contraction to expansion, due to the redistribution of electrons. The adsorption energies of the H2O monomer on Mg-, Ca-, and Fe(II)-doped kaolinites (001) were less than on undoped kaolinite (001). The results further revealed that the H2O molecule can also adsorb on the hollow site on the second-layer O surface of the Mg-, Ca-, and Fe(II)-doped kaolinites (001). For the undoped kaolinite, however, the H2O molecule adsorbs on the surface only. The energetic barriers for penetration of H2O from the adsorption site on the surface to the adsorption site on the O surface of Mg-, Ca-, and Fe(II)-doped kaolinites were also calculated: 1.18 eV, 1.07 eV, and 1.41 eV, respectively. The results imply that the influences of Mg, Ca, and Fe(II) doping on kaolinite allow the adsorbed water molecules to penetrate from the on-surface adsorption site to the O-surface site.
引用
收藏
页码:330 / 337
页数:8
相关论文
共 50 条
  • [41] First principles study on the adsorption of CO2 and H2O on the K2CO3 (001) surface
    Gao, Hongwei
    Pishney, Stephen
    Janik, Michael J.
    SURFACE SCIENCE, 2013, 609 : 140 - 146
  • [42] Selective adsorption of trace H2O over O2 on Pt/Fe/Pt(111) surface of Pt-Fe catalyst
    Ma, Teng
    Cao, Rui
    Bao, Xue
    Hua, Erbing
    Yang, Mu
    Wang, Yaqin
    APPLIED SURFACE SCIENCE, 2019, 476 : 387 - 390
  • [43] First-principles calculations investigation on different coverage of H2O adsorption on the Mg-montmorillonite (010) edge surface
    Zhao, Jian
    Xu, Xiao
    Gao, Wei
    Huang, Bo-Wen
    He, Man-Chao
    APPLIED SURFACE SCIENCE, 2023, 626
  • [44] Adsorption of H2O on the (001) plane of V2O5:: chemisorption site identification
    Ranea, VA
    Vicente, JL
    Mola, EE
    Arnal, P
    Thomas, H
    Gambaro, L
    SURFACE SCIENCE, 2000, 463 (02) : 115 - 124
  • [45] Role of SO2 and H2O in the mercury adsorption on ceria surface: A DFT study
    Li, Hailong
    Liu, Suojiang
    Yang, Jianping
    Liu, Yue
    Hu, Yingchao
    Feng, Shihao
    Yang, Zequn
    Zhao, Jiexia
    Qu, Wenqi
    FUEL, 2020, 260
  • [46] Effects of Au doping on the adsorption of xanthate on pyrite surface in presence of H 2 O: A DFT study
    Chang, Ziyong
    He, Baili
    Luo, Yuanjia
    Shen, Zhengchang
    Zou, Laichang
    Wang, Qiankun
    Sun, Zhongmei
    MINERALS ENGINEERING, 2024, 210
  • [47] Influence mechanism of Fe(II/III) doping on the adsorption of methylamine salts on kaolinite surfaces elucidated through DFT calculations
    Ling, Yunjia
    Chen, Jun
    Min, Fanfei
    Cheng, Yali
    Chu, Xinxia
    Shang, Huanhuan
    Wang, Tianyue
    JOURNAL OF MOLECULAR LIQUIDS, 2023, 390
  • [48] Adsorption Property of Mg-MOF-74 for CO2/H2O
    Du Tao
    Long Yuan
    Tang Qi
    Li Shenglu
    Liu Liying
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2017, 38 (02): : 225 - 230
  • [49] First-principles study on the effect of pressure on the adsorption of H2O on the Mg-montmorillonite (010) surface
    Xu, Xiao
    Zhao, Jian
    Gao, Wei
    Shi, Ting -Ting
    He, Man-Chao
    PHYSICA B-CONDENSED MATTER, 2024, 680
  • [50] Copper(II) adsorption on the kaolinite(001) surface: Insights from first-principles calculations and molecular dynamics simulations
    Kong, Xiang-Ping
    Wang, Juan
    APPLIED SURFACE SCIENCE, 2016, 389 : 316 - 323