Visible Light Metasurfaces Based on Single-Crystal Silicon

被引:101
作者
Sell, David [1 ]
Yang, Jianji [2 ]
Doshay, Sage [1 ]
Zhang, Kai [2 ]
Fan, Jonathan A. [2 ]
机构
[1] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
来源
ACS PHOTONICS | 2016年 / 3卷 / 10期
基金
美国国家科学基金会;
关键词
plasmonics; semiconductors; single crystal; silicon; visible light; metasurfaces; metamaterials; OPTICAL-ABSORPTION; HIGH-EFFICIENCY; PHASE; SCATTERING; LENSES; METAMATERIALS; REFRACTION; RESOLUTION; NANOWIRES; ELEMENTS;
D O I
10.1021/acsphotonics.6b00436
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Semiconducting nanostructures are promising as components in high-performance metasurfaces. We show that single-crystal silicon can be used to realize efficient metasurface devices across the entire visible spectrum, ranging from 480 to 700 nm. Alternative forms of silicon, such as polycrystalline and amorphous silicon, suffer from higher absorption losses and do not yield efficient metasurfaces across this wavelength range. To demonstrate, we theoretically and experimentally characterize the resonant scattering peaks of individual single-crystal silicon nanoridges. In addition, we design high-efficiency metagratings and lenses based on nanoridge arrays, operating at visible wavelengths, using a stochastic optimization approach. We find that at wavelengths where single-crystal silicon is effectively lossless, devices based on high aspect ratio nanostructures are optimal. These devices possess efficiencies similar to those made of titanium oxide, which is an established material for high-efficiency visible wavelength metasurfaces. At blue wavelengths, where single-crystal silicon exhibits absorption losses, optimal devices are instead based on coupled low aspect ratio resonant nanostructures and are able to provide reasonably high efficiencies. We envision that crystalline silicon metasurfaces will enable compact optical systems spanning the full visible spectrum.
引用
收藏
页码:1919 / 1925
页数:7
相关论文
共 36 条
[1]   Multiwavelength achromatic metasurfaces by dispersive phase compensation [J].
Aieta, Francesco ;
Kats, Mikhail A. ;
Genevet, Patrice ;
Capasso, Federico .
SCIENCE, 2015, 347 (6228) :1342-1345
[2]   Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths Based on Plasmonic Metasurfaces [J].
Aieta, Francesco ;
Genevet, Patrice ;
Kats, Mikhail A. ;
Yu, Nanfang ;
Blanchard, Romain ;
Gahurro, Zeno ;
Capasso, Federico .
NANO LETTERS, 2012, 12 (09) :4932-4936
[3]  
Arbabi A, 2015, NAT NANOTECHNOL, V10, P937, DOI [10.1038/nnano.2015.186, 10.1038/NNANO.2015.186]
[4]   Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays [J].
Arbabi, Amir ;
Horie, Yu ;
Ball, Alexander J. ;
Bagheri, Mahmood ;
Faraon, Andrei .
NATURE COMMUNICATIONS, 2015, 6
[5]   Efficient and intuitive method for the analysis of light scattering by a resonant nanostructure [J].
Bai, Q. ;
Perrin, M. ;
Sauvan, C. ;
Hugonin, J-P ;
Lalanne, P. .
OPTICS EXPRESS, 2013, 21 (22) :27371-27382
[6]   Optical Properties of Individual Silicon Nanowires for Photonic Devices [J].
Broenstrup, Gerald ;
Jahr, Norbert ;
Leiterer, Christian ;
Csaki, Andrea ;
Fritzsche, Wolfgang ;
Christiansen, Silke .
ACS NANO, 2010, 4 (12) :7113-7122
[7]   Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light [J].
Byrnes, Steven J. ;
Lenef, Alan ;
Aieta, Francesco ;
Capasso, Federico .
OPTICS EXPRESS, 2016, 24 (05) :5110-5124
[8]   Tuning the Color of Silicon Nanostructures [J].
Cao, Linyou ;
Fan, Pengyu ;
Barnard, Edward S. ;
Brown, Ana M. ;
Brongersma, Mark L. .
NANO LETTERS, 2010, 10 (07) :2649-2654
[9]   Active terahertz metamaterial devices [J].
Chen, Hou-Tong ;
Padilla, Willie J. ;
Zide, Joshua M. O. ;
Gossard, Arthur C. ;
Taylor, Antoinette J. ;
Averitt, Richard D. .
NATURE, 2006, 444 (7119) :597-600
[10]   Seamless On-Wafer Integration of Si(100) MOSFETs and GaN HEMTs [J].
Chung, Jinwook W. ;
Lee, Jae-kyu ;
Piner, Edwin L. ;
Palacios, Tomas .
IEEE ELECTRON DEVICE LETTERS, 2009, 30 (10) :1015-1017