High-efficiency p-n junction oxide photoelectrodes for photoelectrochemical water splitting

被引:16
作者
Liu, Zhifeng [1 ,2 ]
Yan, Lu [3 ]
机构
[1] Hubei Univ Technol, Hubei Collaborat Innovat Ctr High Efficiency Util, Wuhan 430068, Peoples R China
[2] Hubei Univ Technol, Sch Sci, Wuhan 430068, Peoples R China
[3] Tianjin Chengjian Univ, Sch Mat Sci & Engn, Tianjin 300384, Peoples R China
基金
中国国家自然科学基金;
关键词
HYDROGEN GENERATION; NANOTUBE ARRAYS; NANOWIRE ARRAYS; THIN-FILMS; TIO2; NANOSTRUCTURES; FABRICATION;
D O I
10.1039/c6cp06536h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Development of all oxide p-n junctions makes a significant advancement in photoelectrode catalysis functional materials. In this article, we report the preparation of TiO2 nanorod (NR)/Cu2O photoanodes via a simple hydrothermal method followed by an electrochemical deposition process. This facile synthesis route can simultaneously achieve uniform TiO2 NR/Cu2O composite nanostructures and obtain varied amounts of Cu2O by controlling the deposition time. The photocurrent density of TiO2 NR/Cu2O heterojunction photoanodes enhanced the photocatalytic activity with a photocurrent density of 5.25 mA cm(-2) at 1.23 V versus RHE compared to pristine TiO2 NR photoanodes under the same conditions. It is demonstrated that the presence of Cu2O has played an important role in expanding the spectral response region and reducing the photogenerated charge recombination rate. More importantly, the results provide new insights into the performance of all oxide p-n junctions as photoanodes for PEC water splitting.
引用
收藏
页码:31230 / 31237
页数:8
相关论文
共 50 条
  • [41] Photoelectrochemical salt water splitting using ternary silver-tin-selenide photoelectrodes
    Cheng, Kong-Wei
    Wu, Yu-Hsiang
    Chiu, Ting-Hsuan
    JOURNAL OF POWER SOURCES, 2016, 307 : 329 - 339
  • [42] Enhanced photoelectrochemical water splitting with TiO2@Ag2O nanowire arrays via p-n heterojunction formation
    Hao, Chenchun
    Wang, Wenzhong
    Zhang, Ru
    Zou, Bin
    Shi, Honglong
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 174 : 132 - 139
  • [43] Interleaved biphasic p-n blended copper indium selenide photoelectrode and its application in pulse-driven photoelectrochemical water splitting
    Kim, Young Been
    Jung, Sung Hyeon
    Kim, Dong Su
    Deshpande, Nishad G.
    Lee, Ho Seong
    Cho, Hyung Koun
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 285
  • [44] Imperfect makes perfect: defect engineering of photoelectrodes towards efficient photoelectrochemical water splitting
    Wang, Xin
    Ma, Siqing
    Liu, Boyan
    Wang, Songcan
    Huang, Wei
    CHEMICAL COMMUNICATIONS, 2023, 59 (67) : 10044 - 10066
  • [45] TiO2/TiSi2 Heterostructures for High-Efficiency Photoelectrochemical H2O Splitting
    Lin, Yongjing
    Zhou, Sa
    Liu, Xiaohua
    Sheehan, Stafford
    Wang, Dunwei
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (08) : 2772 - +
  • [46] Visible light driven CZTS QDs/α-Fe2O3-graphene p-n heterojunction for photoelectrochemical water splitting
    Ikram, Ashi
    Zulfequar, Mohammad
    NANOTECHNOLOGY, 2023, 34 (31)
  • [47] Experimental and first-principles theoretical studies on Ag-doped cuprous oxide as photocathode in photoelectrochemical splitting of water
    Upadhyay, Sumant
    Sharma, Dipika
    Singh, Nirupama
    Satsangi, Vibha R.
    Shrivastav, Rohit
    Waghmare, Umesh V.
    Dass, Sahab
    JOURNAL OF MATERIALS SCIENCE, 2014, 49 (02) : 868 - 876
  • [48] Interfacial Charge Transport in 1D TiO2 Based Photoelectrodes for Photoelectrochemical Water Splitting
    Yu, Zhongrui
    Liu, Haobo
    Zhu, Mingyuan
    Li, Ying
    Li, Wenxian
    SMALL, 2021, 17 (09)
  • [49] High Performance and Stability of Micropatterned Oxide-Passivated Photoanodes with Local Catalysts for Photoelectrochemical Water Splitting
    Oh, Seungtaeg
    Oh, Jihun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (01) : 133 - 141
  • [50] Role of oxygen vacancy in metal oxide based photoelectrochemical water splitting
    Wang, Zhiliang
    Wang, Lianzhou
    ECOMAT, 2021, 3 (01)