Formylglycine-generating enzyme binds substrate directly at a mononuclear Cu(I) center to initiate O2 activation

被引:39
作者
Appel, Mason J. [1 ,2 ]
Meier, Katlyn K. [2 ]
Lafrance-Vanasse, Julien [3 ,7 ]
Lim, Hyeongtaek [2 ]
Tsai, Chi-Lin [4 ]
Hedman, Britt [5 ]
Hodgson, Keith O. [2 ,5 ]
Tainer, John A. [3 ,4 ]
Solomon, Edward I. [2 ,5 ]
Bertozzi, Carolyn R. [2 ,6 ]
机构
[1] Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA
[2] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[3] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA
[4] Univ Texas MD Anderson Canc Ctr, Dept Mol & Cellular Oncol, Houston, TX 77030 USA
[5] Stanford Univ, SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA
[6] Stanford Univ, Howard Hughes Med Inst, Stanford, CA 94305 USA
[7] Genentech Inc, Prot Chem, San Francisco, CA 94080 USA
基金
美国国家卫生研究院;
关键词
formylglycine; copper oxidase; metalloenzyme; X-ray spectroscopy; bioinorganic chemistry; ISOPENICILLIN-N-SYNTHASE; MULTIPLE SULFATASE DEFICIENCY; STRUCTURAL BASIS; COPPER; MECHANISM; CHEMISTRY; SITE; RECONSTITUTION; OXIDASE;
D O I
10.1073/pnas.1818274116
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The formylglycine-generating enzyme (FGE) is required for the posttranslational activation of type I sulfatases by oxidation of an active-site cysteine to Ca-formylglycine. FGE has emerged as an enabling biotechnology tool due to the robust utility of the aldehyde product as a bioconjugation handle in recombinant proteins. Here, we show that Cu(I)-FGE is functional in O-2 activation and reveal a high-resolution X-ray crystal structure of FGE in complex with its catalytic copper cofactor. We establish that the copper atom is coordinated by two active-site cysteine residues in a nearly linear geometry, supporting and extending prior biochemical and structural data. The active cuprous FGE complex was interrogated directly by X-ray absorption spectroscopy. These data unambiguously establish the configuration of the resting enzyme metal center and, importantly, reveal the formation of a three-coordinate tris(thiolate) trigonal planar complex upon substrate binding as furthermore supported by density functional theory (DFT) calculations. Critically, inner-sphere substrate coordination turns on O-2 activation at the copper center. These collective results provide a detailed mechanistic framework for understanding why nature chose this structurally unique monocopper active site to catalyze oxidase chemistry for sulfatase activation.
引用
收藏
页码:5370 / 5375
页数:6
相关论文
共 35 条
[1]   Formylglycine, a Post-Translationally Generated Residue with Unique Catalytic Capabilities and Biotechnology Applications [J].
Appel, Mason J. ;
Bertozzi, Carolyn R. .
ACS CHEMICAL BIOLOGY, 2015, 10 (01) :72-84
[2]   Nickel superoxide dismutase structure and mechanism [J].
Barondeau, DP ;
Kassmann, CJ ;
Bruns, CK ;
Tainer, JA ;
Getzoff, ED .
BIOCHEMISTRY, 2004, 43 (25) :8038-8047
[3]   Structural Biology of Copper Trafficking [J].
Boal, Amie K. ;
Rosenzweig, Amy C. .
CHEMICAL REVIEWS, 2009, 109 (10) :4760-4779
[4]   THE STRUCTURE OF HUMAN MITOCHONDRIAL MANGANESE SUPEROXIDE-DISMUTASE REVEALS A NOVEL TETRAMERIC INTERFACE OF 2 4-HELIX BUNDLES [J].
BORGSTAHL, GEO ;
PARGE, HE ;
HICKEY, MJ ;
BEYER, WF ;
HALLEWELL, RA ;
TAINER, JA .
CELL, 1992, 71 (01) :107-118
[5]   VTVH-MCD and DFT studies of thiolate bonding to {FeNO}7/{FeO2}8 complexes of isopenicillin N synthase:: Substrate determination of oxidase versus oxygenase activity in nonheme Fe enzymes [J].
Brown, Christina D. ;
Neidig, Michael L. ;
Neibergall, Matthew B. ;
Lipscomb, John D. ;
Solomon, Edward I. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (23) :7427-7438
[6]   Reaction Coordinate of Isopenicillin N Synthase: Oxidase versus Oxygenase Activity [J].
Brown-Marshall, Christina D. ;
Diebold, Adrienne R. ;
Solomon, Edward I. .
BIOCHEMISTRY, 2010, 49 (06) :1176-1182
[7]   Function and structure of a prokaryotic formylglycine-generating enzyme [J].
Carlson, Brian L. ;
Ballister, Edward R. ;
Skordalakes, Emmanuel ;
King, David S. ;
Breidenbach, Mark A. ;
Gilmore, Sarah A. ;
Berger, James M. ;
Bertozzi, Carolyn R. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (29) :20117-20125
[8]   Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR [J].
Changela, A ;
Chen, K ;
Xue, Y ;
Holschen, J ;
Outten, CE ;
O'Halloran, TV ;
Mondragón, A .
SCIENCE, 2003, 301 (5638) :1383-1387
[9]   The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases [J].
Cosma, MP ;
Pepe, S ;
Annunziata, I ;
Newbold, RF ;
Grompe, M ;
Parenti, G ;
Ballabio, A .
CELL, 2003, 113 (04) :445-456
[10]   Multiple sulfatase deficiency is caused by mutations in the gene encoding the human Cα-formylglycine generating enzyme [J].
Dierks, T ;
Schmidt, B ;
Borissenko, LV ;
Peng, JH ;
Preusser, A ;
Mariappan, M ;
von Figura, K .
CELL, 2003, 113 (04) :435-444