Large-Area Low-Cost Plasmonic Perfect Absorber Chemical Sensor Fabricated by Laser Interference Lithography

被引:70
作者
Bagheri, Shahin [1 ,2 ]
Strohfeldt, Nikolai [1 ,2 ]
Sterl, Florian [1 ,2 ]
Berrier, Audrey [2 ,3 ]
Tittl, Andreas [1 ,2 ,4 ]
Giessen, Harald [1 ,2 ]
机构
[1] Univ Stuttgart, Inst Phys 4, D-70569 Stuttgart, Germany
[2] Univ Stuttgart, Res Ctr SCoPE, D-70569 Stuttgart, Germany
[3] Univ Stuttgart, Inst Phys 1, D-70569 Stuttgart, Germany
[4] Ecole Polytech Fed Lausanne, Inst Bioengn, CH-1015 Lausanne, Switzerland
关键词
plasmonics; perfect absorber; hydrogen sensing; large-area fabrication; laser interference lithography; NANOANTENNA ARRAYS; LIGHT-ABSORPTION; THIN-FILMS; HYDROGEN; SPECTROSCOPY; RESONANCE; NANOSTRUCTURES; METAMATERIALS; NANOPARTICLES; ENHANCEMENT;
D O I
10.1021/acssensors.6b00444
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We employ laser interference lithography as a reliable and low-cost fabrication method to create nanowire and nanosquare arrays in photopolymers for manufacturing plasmonic perfect absorber sensors over homogeneous areas as large as 5.7 cm(2). Subsequently, we transfer the fabricated patterns into a palladium layer by using argon ion beam etching. Geometry and periodicity of our large-area metallic nanostructures are precisely controlled by adjusting the interference conditions during single- and double-exposure processes, resulting in active nanostructures over large areas with spectrally selective perfect absorption of light from the visible to the near-infrared wavelength range. In addition, we demonstrate the method's applicability for hydrogen detection schemes by measuring the hydrogen sensing performance of our polarization independent palladium-based perfect absorbers. Since palladium changes its optical and structural properties reversibly upon hydrogenation, exposure of the sample to hydrogen causes distinct and reversible changes within seconds in the absorption of light, which are easily measured by standard microscopic tools. The fabricated large-area perfect absorber sensors provide nearly perfect absorption of light at 730 and 950 nm, respectively, and absolute reflectance changes from below 1% to above 4% in the presence of hydrogen. This translates to a relative signal change of almost 400%. The large-area and fast manufacturing process makes our approach highly attractive for simple and low-cost sensor fabrication, and therefore, suitable for industrial production of plasmonic devices in the near future.
引用
收藏
页码:1148 / 1154
页数:7
相关论文
共 45 条
[1]   High-Throughput Nanofabrication of Infrared Plasmonic Nanoantenna Arrays for Vibrational Nanospectroscopy [J].
Aksu, Serap ;
Yanik, Ahmet A. ;
Adato, Ronen ;
Artar, Alp ;
Huang, Min ;
Altug, Hatice .
NANO LETTERS, 2010, 10 (07) :2511-2518
[2]   Tunable Fano resonance in large scale polymer-dielectric slab photonic crystals [J].
Asadi, Reza ;
Bagheri, Shahin ;
Khaje, Mandi ;
Malekmohammad, Mohammad ;
Tavassoly, Mohammad-Taghi .
MICROELECTRONIC ENGINEERING, 2012, 97 :201-203
[3]   Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers [J].
Aydin, Koray ;
Ferry, Vivian E. ;
Briggs, Ryan M. ;
Atwater, Harry A. .
NATURE COMMUNICATIONS, 2011, 2
[4]   Large-area fabrication of TiN nanoantenna arrays for refractory plasmonics in the mid-infrared by femtosecond direct laser writing and interference lithography [J].
Bagheri, Shahin ;
Zgrabik, Christine M. ;
Gissibl, Timo ;
Tittl, Andreas ;
Sterl, Florian ;
Walter, Ramon ;
De Zuani, Stefano ;
Berrier, Audrey ;
Stauden, Thomas ;
Richter, Gunther ;
Hu, Evelyn L. ;
Giessen, Harald .
OPTICAL MATERIALS EXPRESS, 2015, 5 (11) :2625-2633
[5]   Fabrication of Square-Centimeter Plasnnonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement [J].
Bagheri, Shahin ;
Weber, Ksenia ;
Gissibl, Timo ;
Weiss, Thomas ;
Neubrech, Frank ;
Giessen, Harald .
ACS PHOTONICS, 2015, 2 (06) :779-786
[6]   Large-Area Antenna-Assisted SEIRA Substrates by Laser Interference Lithography [J].
Bagheri, Shahin ;
Giessen, Harald ;
Neubrech, Frank .
ADVANCED OPTICAL MATERIALS, 2014, 2 (11) :1050-1056
[7]  
Baldi A, 2014, NAT MATER, V13, P1143, DOI [10.1038/NMAT4086, 10.1038/nmat4086]
[8]  
Bardhan R, 2013, NAT MATER, V12, P905, DOI [10.1038/NMAT3716, 10.1038/nmat3716]
[9]   Light on the Tip of a Needle: Plasmonic Nanofocusing for Spectroscopy on the Nanoscale [J].
Berweger, Samuel ;
Atkin, Joanna M. ;
Olmon, Robert L. ;
Raschke, Markus B. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (07) :945-952
[10]   λ3/1000 Plasmonic Nanocavities for Biosensing Fabricated by Soft UV Nanoimprint Lithography [J].
Cattoni, Andrea ;
Ghenuche, Petru ;
Haghiri-Gosnet, Anne-Marie ;
Decanini, Dominique ;
Chen, Jing ;
Pelouard, Jean-Luc ;
Collin, Stephane .
NANO LETTERS, 2011, 11 (09) :3557-3563