Unconditionally stable method and numerical solution of the hyperbolic phase-field crystal equation

被引:57
作者
Galenko, P. K. [1 ]
Gomez, H. [2 ]
Kropotin, N. V. [3 ]
Elder, K. R. [4 ]
机构
[1] Univ Jena, Fak Phys Astron, D-07737 Jena, Germany
[2] Univ A Coruna, Dept Math Methods, La Coruna 15192, Spain
[3] Deutsch Zentrum Luft & Raumfahrt DLR, Inst Mat Phys Weltraum, D-51170 Cologne, Germany
[4] Oakland Univ, Dept Phys, Rochester, MI 48309 USA
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 01期
基金
欧洲研究理事会;
关键词
DECOMPOSITION; PROPAGATION;
D O I
10.1103/PhysRevE.88.013310
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The phase-field crystal model (PFC model) resolves systems on atomic length scales and diffusive time scales and lies in between standard phase-field modeling and atomistic methods. More recently a hyperbolic or modified PFC model was introduced to describe fast (propagative) and slow (diffusive) dynamics. We present a finite-element method for solving the hyperbolic PFC equation, introducing an unconditionally stable time integration algorithm. A spatial discretization is used with the traditional C-0-continuous Lagrange elements with quadratic shape functions. The space-time discretization of the PFC equation is second-order accurate in time and is shown analytically to be unconditionally stable. Numerical simulations are used to show a monotonic decrease of the free energy during the transition from the homogeneous state to stripes. Benchmarks on modeling patterns in two-dimensional space are carried out. The benchmarks show the applicability of the proposed algorithm for determining equilibrium states. Quantitatively, the proposed algorithm is verified for the problem of lattice parameter and velocity selection when a crystal invades a homogeneous unstable liquid.
引用
收藏
页数:11
相关论文
共 35 条
  • [1] Nucleation and growth by a phase field crystal (PFC) model
    Backofen, R.
    Raetz, A.
    Voigt, A.
    [J]. PHILOSOPHICAL MAGAZINE LETTERS, 2007, 87 (11) : 813 - 820
  • [2] Baskaran A., SIAM J NUME IN PRESS
  • [3] PATTERN PROPAGATION IN NONLINEAR DISSIPATIVE SYSTEMS
    BENJACOB, E
    BRAND, H
    DEE, G
    KRAMER, L
    LANGER, JS
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1985, 14 (03) : 348 - 364
  • [4] An efficient algorithm for solving the phase field crystal model
    Cheng, Mowei
    Warren, James A.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (12) : 6241 - 6248
  • [5] PROPAGATING PATTERN SELECTION
    DEE, G
    LANGER, JS
    [J]. PHYSICAL REVIEW LETTERS, 1983, 50 (06) : 383 - 386
  • [6] Phase-field crystal modeling and classical density functional theory of freezing
    Elder, K. R.
    Provatas, Nikolas
    Berry, Joel
    Stefanovic, Peter
    Grant, Martin
    [J]. PHYSICAL REVIEW B, 2007, 75 (06)
  • [7] Patterning of Heteroepitaxial Overlayers from Nano to Micron Scales
    Elder, K. R.
    Rossi, G.
    Kanerva, P.
    Sanches, F.
    Ying, S-C.
    Granato, E.
    Achim, C. V.
    Ala-Nissila, T.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (21)
  • [8] Elder KR, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.051605
  • [9] Modeling elasticity in crystal growth
    Elder, KR
    Katakowski, M
    Haataja, M
    Grant, M
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (24) : 2457011 - 2457014
  • [10] Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview
    Emmerich, Heike
    Loewen, Hartmut
    Wittkowski, Raphael
    Gruhn, Thomas
    Toth, Gyula I.
    Tegze, Gyorgy
    Granasy, Laszlo
    [J]. ADVANCES IN PHYSICS, 2012, 61 (06) : 665 - 743