Local martingale solutions to the stochastic one layer shallow water equations

被引:11
作者
Link, Joshua
Phuong Nguyen [1 ]
Temam, Roger
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
基金
美国国家科学基金会;
关键词
Shallow water equations; Stochastic partial differential equations; Galerkin approximation; Martingale solutions; Local existence; PRIMITIVE EQUATIONS; PATHWISE SOLUTIONS; GLOBAL EXISTENCE; CAUCHY-PROBLEM;
D O I
10.1016/j.jmaa.2016.10.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the single layer shallow water equations on a bounded domain M subset of R-2 forced by a multiplicative white noise, and obtain the existence and uniqueness of a maximal pathwise solution for a short period of time. The proof relies on the Skorohod representation theorem, the Gyongy Krylov theorem, stopping time arguments, and isotropic estimates. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:93 / 139
页数:47
相关论文
共 34 条
  • [1] [Anonymous], 1988, Chicago Lectures in Mathematics
  • [2] [Anonymous], 1992, ENCY MATH APPL
  • [3] [Anonymous], 1999, Modern techniques and their applications
  • [4] [Anonymous], ASPECTS MATH E
  • [5] STOCHASTIC NAVIER-STOKES EQUATIONS
    BENSOUSSAN, A
    [J]. ACTA APPLICANDAE MATHEMATICAE, 1995, 38 (03) : 267 - 304
  • [6] Local solutions for stochastic Navier stokes equations
    Bensoussan, A
    Frehse, J
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (02): : 241 - 273
  • [7] Billingsley P., 1995, WILEY SER PROBAB MAT
  • [8] ON THE WELL-POSEDNESS FOR THE VISCOUS SHALLOW WATER EQUATIONS
    Chen, Qionglei
    Miao, Changxing
    Zhang, Zhifei
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (02) : 443 - 474
  • [9] Chow P. L., 2009, COMMUN STOCH ANAL, V2, P211
  • [10] Explosive solutions of stochastic reaction-diffusion equations in mean Lp-norm
    Chow, Pao-Liu
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (05) : 2567 - 2580