Scattering theory for Jacobi operators with quasi-periodic background

被引:29
作者
Egorova, I
Michor, J
Teschl, G
机构
[1] Kharkov Natl Univ, UA-61164 Kharkov, Ukraine
[2] Fac Math, A-1090 Vienna, Austria
[3] Int Erwin Schrodinger Inst Math Phys, A-1090 Vienna, Austria
[4] Univ Paris 07, F-75221 Paris 05, France
关键词
D O I
10.1007/s00220-006-1518-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop direct and inverse scattering theory for Jacobi operators which are short range perturbations of quasi-periodic finite-gap operators. We show existence of transformation operators, investigate their properties, derive the corresponding Gel'fand-Levitan-Marchenko equation, and find minimal scattering data which determine the perturbed operator uniquely.
引用
收藏
页码:811 / 842
页数:32
相关论文
共 32 条