Scattering theory for Jacobi operators with quasi-periodic background

被引:29
作者
Egorova, I
Michor, J
Teschl, G
机构
[1] Kharkov Natl Univ, UA-61164 Kharkov, Ukraine
[2] Fac Math, A-1090 Vienna, Austria
[3] Int Erwin Schrodinger Inst Math Phys, A-1090 Vienna, Austria
[4] Univ Paris 07, F-75221 Paris 05, France
关键词
D O I
10.1007/s00220-006-1518-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop direct and inverse scattering theory for Jacobi operators which are short range perturbations of quasi-periodic finite-gap operators. We show existence of transformation operators, investigate their properties, derive the corresponding Gel'fand-Levitan-Marchenko equation, and find minimal scattering data which determine the perturbed operator uniquely.
引用
收藏
页码:811 / 842
页数:32
相关论文
共 32 条
[1]  
BAZARGAN J, 2003, MAT FIZ ANAL GEOM, V10, P425
[2]  
BULLA W, 1998, MEMOIRS AM MATH SOC
[3]  
Case K. M., 1973, J MATH PHYS, V14, P2166
[4]   DISCRETE INVERSE SCATTERING PROBLEMS .2. [J].
CASE, KM .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (07) :916-920
[5]   ORTHOGONAL POLYNOMIALS .2. [J].
CASE, KM .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (07) :1435-1440
[6]   DISCRETE VERSION OF INVERSE SCATTERING PROBLEM [J].
CASE, KM ;
KAC, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (05) :594-603
[7]   DISCRETE INVERSE SCATTERING PROBLEM IN ONE DIMENSION [J].
CASE, KM .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (02) :143-146
[8]   DISCRETE VERSION OF MARCHENKO EQUATIONS IN INVERSE SCATTERING PROBLEM [J].
CASE, KM ;
CHIU, SC .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (11) :1643-1647
[9]  
Cojuhari P.A., 1988, INV DIFF EQ MATH ANA, V173, P80
[10]   Transformation operator for Jacobi matrices with asymptotically periodic coefficients [J].
de Monvel, AB ;
Egorova, I .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2004, 10 (08) :711-727