Using Sterol Substitution to Probe the Role of Membrane Domains in Membrane Functions

被引:11
作者
Kim, JiHyun [1 ]
London, Erwin [1 ]
机构
[1] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA
关键词
Cholesterol; specific lipids; Cholesterol oxidation; Sterol; Membrane dynamics; analytical techniques; Physical biochemistry; ACETYLCHOLINE-RECEPTOR FUNCTION; VIRION-ASSOCIATED CHOLESTEROL; LIGAND-BINDING FUNCTION; ORDERED LIPID DOMAINS; GPI-ANCHORED PROTEINS; MYCOPLASMA-CAPRICOLUM; PLASMA-MEMBRANE; HUMAN SPERM; ACROSOMAL RESPONSIVENESS; STRUCTURAL REQUIREMENTS;
D O I
10.1007/s11745-015-4007-y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ordered membrane lipid domains rich in sphingolipids and sterols ("lipid rafts") are thought to be important in many biological processes. However, it is often difficult to distinguish domain-dependent biological functions from ones that have a specific dependence on sterol, e.g. are dependent upon a protein with a function that is dependent upon its binding to sterol. Removing cholesterol and replacing it with various sterols with varying abilities to form membrane domains or otherwise alter membrane properties has the potential to help distinguish these cases. This review describes this strategy, and how it has been applied by various investigators to understand cellular functions.
引用
收藏
页码:721 / 734
页数:14
相关论文
共 99 条
[1]   Low chemical specificity of the nicotinic acetylcholine receptor sterol activation site [J].
Addona, GH ;
Sandermann, H ;
Kloczewiak, MA ;
Miller, KW .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2003, 1609 (02) :177-182
[2]   On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: Physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes [J].
Ahmed, SN ;
Brown, DA ;
London, E .
BIOCHEMISTRY, 1997, 36 (36) :10944-10953
[3]   Cyclodextrins as catalysts for the removal of cholesterol from macrophage foam cells [J].
Atger, VM ;
Moya, MD ;
Stoudt, GW ;
Rodrigueza, WV ;
Phillips, MC ;
Rothblat, GH .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 99 (04) :773-780
[4]   Effect of the structure of lipids favoring disordered domain formation on the stability of cholesterol-containing ordered domains (lipid rafts): Identification of multiple raft-stabilization mechanisms [J].
Bakht, Omar ;
Pathak, Priyadarshini ;
London, Erwin .
BIOPHYSICAL JOURNAL, 2007, 93 (12) :4307-4318
[5]   Disruption of lipid rafts causes apoptotic cell death in HaCaT keratinocytes [J].
Bang, B ;
Gniadecki, R ;
Gajkowska, B .
EXPERIMENTAL DERMATOLOGY, 2005, 14 (04) :266-272
[6]   Survival of FimH-expressing enterobacteria in macrophages relies on glycolipid traffic [J].
Baorto, DM ;
Gao, ZM ;
Malaviya, R ;
Dustin, ML ;
vanderMerwe, A ;
Lublin, DM ;
Abraham, SN .
NATURE, 1997, 389 (6651) :636-639
[7]   Sterol structure determines miscibility versus melting transitions in lipid vesicles [J].
Beattie, ME ;
Veatch, SL ;
Stottrup, BL ;
Keller, SL .
BIOPHYSICAL JOURNAL, 2005, 89 (03) :1760-1768
[8]   Cholesterol addition to ER membranes alters conformation of SCAP, the SREBP escort protein that regulates cholesterol metabolism [J].
Brown, AJ ;
Sun, LP ;
Feramisco, JD ;
Brown, MS ;
Goldstein, JL .
MOLECULAR CELL, 2002, 10 (02) :237-245
[9]   Structure and function of sphingolipid- and cholesterol-rich membrane rafts [J].
Brown, DA ;
London, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (23) :17221-17224
[10]   Functions of lipid rafts in biological membranes [J].
Brown, DA ;
London, E .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1998, 14 :111-136