Compressibilities of MnFe2O4 polymorphs

被引:11
|
作者
Ye, Lijin [1 ]
Zhai, Shuangmeng [2 ]
Wu, Xiang [1 ]
Xu, Chaowen [1 ]
Yang, Ke [3 ]
Higo, Yuji [4 ]
机构
[1] Peking Univ, Key Lab Orogen Belts & Crustal Evolut, MOE, Sch Earth & Space Sci, Beijing 100871, Peoples R China
[2] Chinese Acad Sci, Inst Geochem, Key Lab High Temperature & High Pressure Study Ea, Guiyang 550002, Guizhou, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai Synchrotron Radiat Facil, Shanghai 201204, Peoples R China
[4] Japan Synchrotron Radiat Res Inst, Sayo, Hyogo 6795198, Japan
基金
中国国家自然科学基金;
关键词
MnFe2O4; High pressure; Equation of state; Synchrotron X-ray diffraction; Phase transition; HIGH-PRESSURE PHASE; EQUATION-OF-STATE; X-RAY-DIFFRACTION; MAGNETITE; TRANSITION; SPINEL; MGFE2O4;
D O I
10.1007/s00269-015-0744-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The high-pressure behavior and stability of synthetic jacobsite MnFe2O4 have been investigated up to 39.55 GPa at room temperature by means of in situ synchrotron X-ray diffraction using diamond anvil cell and multi-anvil high-pressure apparatus. The MnFe2O4 spinel undergoes a phase transition at about 18 GPa to form a denser antiferromagnetic CaMn2O4-type (CMafm) polymorph. The CMafm MnFe2O4 is stable up to 39.55 GPa in this study and remains after decompression. Fitting the pressure-volume data using a third-order Birch-Murnaghan equation of state, the isothermal bulk modulus values and the first pressure derivatives were obtained as K-0 = 169.7 (35) GPa, K-0' = 2.87 (40) for spinel-type MnFe2O4 and K-0 = 149.2 (24) GPa, K-0' = 3.98 (19) for CMafm MnFe2O4, respectively. If K-0' is fixed to 4, K-0 was obtained as 160.6 (11) GPa for spinel-type MnFe2O4 and 148.9 (7) GPa for CMafm MnFe2O4. The effects of cation substitution on the isothermal bulk modulus and pressure for phase transition of Fe3+-bearing spinels were discussed.
引用
收藏
页码:569 / 577
页数:9
相关论文
共 50 条
  • [1] Compressibilities of MnFe2O4 polymorphs
    Lijin Ye
    Shuangmeng Zhai
    Xiang Wu
    Chaowen Xu
    Ke Yang
    Yuji Higo
    Physics and Chemistry of Minerals, 2015, 42 : 569 - 577
  • [2] Fabrication of MnFe2O4 and Ni: MnFe2O4 nanoparticles for ammonia gas sensor application
    Deivatamil, D.
    Mark, John Abel Martin
    Raghavan, Thiruneelakandan
    Jesuraj, Joseph Prince
    INORGANIC CHEMISTRY COMMUNICATIONS, 2021, 123
  • [3] Thermal behavior of MnFe2O4 and MnFe2O4/C nanocomposite synthesized by a solvothermal method
    Stoia, Marcela
    Muntean, Eliza
    Pacurariu, Cornelia
    Mihali, Ciprian
    THERMOCHIMICA ACTA, 2017, 652 : 1 - 8
  • [4] Theoretical investigation of MnFe2O4
    Elfalaky, A.
    Soliman, S.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 580 : 401 - 406
  • [5] ON SPONTANEOUS MAGNETIZATION OF MNFE2O4
    LOTGERING, FK
    PHILIPS RESEARCH REPORTS, 1965, 20 (03): : 320 - +
  • [6] Theoretical investigation of MnFe2O4
    Soliman, S. (salma@zu.edu.eg), 1600, Elsevier Ltd (580):
  • [7] MOSSBAUER EFFECT IN MNFE2O4
    KONIG, U
    SOLID STATE COMMUNICATIONS, 1971, 9 (07) : 425 - &
  • [8] Superparamagnetic Properties of MnFe2O4 Nanoparticles
    Lee, Seung Wha
    Lee, Jae-Gwang
    Chae, Kwang Pyo
    Kwon, Woo Hyun
    Kim, Chul Sung
    JOURNAL OF THE KOREAN MAGNETICS SOCIETY, 2009, 19 (02): : 57 - 61
  • [9] MAGNON DISPERSION MEASUREMENT IN MNFE2O4
    RAKHECHA, VC
    SATYAMUR.NS
    SRINIVASAN, BS
    MADHAVRA.L
    PHYSICS LETTERS A, 1972, A-40 (02) : 101 - +
  • [10] NOTE ON CATION DISTRIBUTION OF MNFE2O4
    SAWATZKY, GA
    VANDERWO.F
    MORRISH, AH
    PHYSICS LETTERS A, 1967, A 25 (02) : 147 - &