Influence of surface curvature and jet-to-surface spacing on heat transfer of impingement cooled turbine leading edge with crossflow and dimple

被引:22
作者
Xing, Haifeng [1 ]
Du, Wei [1 ]
Sun, Peipei [2 ]
Xu, Senpei [1 ]
He, Dengke [1 ]
Luo, Lei [1 ]
机构
[1] Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China
[2] Aero Engine Acad China, Beijing 101304, Peoples R China
基金
中国国家自然科学基金;
关键词
Impingement cooling; Target surface curvature; Jet-to-surface spacing; Heat transfer; Turbine leading edge; Crossflow; Dimple; CONCAVE SURFACE; CIRCULAR JETS; SPENT AIR; ARRAY; FRICTION;
D O I
10.1016/j.icheatmasstransfer.2022.106116
中图分类号
O414.1 [热力学];
学科分类号
摘要
The impingement cooling is used to protect turbine components under high thermal load. This paper conducts a numerical study of heat transfer characteristics of turbine leading edge with lamilloy cooling structure. Target surface curvature and jet-to-surface spacing under various crossflow Reynolds number conditions are considered. Meanwhile, the target surface is dimpled to enhance heat transfer capability. Besides, staggered film holes are considered in the computational domain. The results show that the crossflow induces a counter rotating vortex pair that greatly increase the near wall turbulence and local heat transfer. The vortex pair forms the bound for a U-shaped high heat transfer region caused by the jet impingement. The target surface curvature tends to enlarge the relative area of the U-shaped region. The increased crossflow strength weakens the jet cooling effect, the total heat transfer performance is therefore decreased. Large jet-to-surface spacing enhances the impingement cooling when crossflow is weak but the total heat transfer will not recover as crossflow Reynolds number get higher compared with small and medium spacing cases.
引用
收藏
页数:13
相关论文
共 34 条
[1]   TURBULENT-FLOW FRICTION AND HEAT-TRANSFER CHARACTERISTICS FOR SPHERICAL CAVITIES ON A FLAT-PLATE [J].
AFANASYEV, VN ;
CHUDNOVSKY, YP ;
LEONTIEV, AI ;
ROGANOV, PS .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 1993, 7 (01) :1-8
[2]   Experimental study of jet impingement heat transfer on a variable-curvature concave surface in a wing leading edge [J].
Bu, Xueqin ;
Peng, Long ;
Lin, Gulping ;
Bai, Lizhan ;
Wen, Dongsheng .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 90 :92-101
[3]  
Ceccato Vania, PSYCHIAT RES, V198, P206, DOI [DOI 10.1016/J.PSYCHRES.2017.06.032, 10.1016/j.cell.2014.11.021, DOI 10.1016/S0272-6386(12)80699-8, 10.1016/j.aqrep.2021.100611, DOI 10.1016/J.SURFCOAT.2007.06.006, 10.1016/B978-0-12-803015-8.00001-2, DOI 10.1016/B978-0-12-803015-8.00001-2]
[4]  
Chupp R., 1969, AIAA-Journal of Aircraft, V6, P203, DOI 10.2514/3.44036
[5]   Heat transfer in the trailing region of gas turbines - A state-of-the-art review [J].
Du Wei ;
Lei, Luo ;
Yinghou, Jiao ;
Songtao, Wang ;
Li Xingchen ;
Sunden, Bengt .
APPLIED THERMAL ENGINEERING, 2021, 199
[6]   Jet impingement heat transfer on dimpled target surfaces [J].
Ekkad, SV ;
Kontrovitz, D .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2002, 23 (01) :22-28
[7]   EFFECTS OF CROSS-FLOW TEMPERATURE ON HEAT-TRANSFER WITHIN AN ARRAY OF IMPINGING JETS [J].
FLORSCHUETZ, LW ;
SU, CC .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1987, 109 (01) :74-82
[8]   Experimental and numerical investigation of jet impingement cooling onto a concave leading edge of a generic gas turbine blade [J].
Forster, Marius ;
Weigand, Bernhard .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2021, 164
[9]  
Funazaki K., 2001, P ASME TURB EXP POW
[10]  
Funazaki K, 2008, PROCEEDINGS OF THE ASME TURBO EXPO 2008, VOL 4, PTS A AND B, P167