Diseased Region Detection of Longitudinal Knee Magnetic Resonance Imaging Data

被引:9
作者
Huang, Chao [1 ,2 ,3 ]
Shan, Liang [3 ,4 ]
Charles, H. Cecil [5 ]
Wirth, Wolfgang [6 ,7 ]
Niethammer, Marc [3 ,4 ]
Zhu, Hongtu [2 ,3 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210018, Jiangsu, Peoples R China
[2] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Biomed Res Imaging Ctr, Chapel Hill, NC 27599 USA
[4] Univ N Carolina, Dept Comp Sci, Chapel Hill, NC 27599 USA
[5] Duke Univ, Dept Radiol, Durham, NC 27710 USA
[6] Paracelsus Med Univ, Inst Anat & Musculoskeletal Res, A-5020 Salzburg, Austria
[7] Chondrometr GmbH, D-83404 Ainring, Germany
关键词
Diseased regions detection; EM algorithm; Gaussian hidden Markov model; longitudinal cartilage thickness; pseudo-likelihood method; CARTILAGE SEGMENTATION; ARTICULAR-CARTILAGE; MAXIMUM-LIKELIHOOD; RISK-FACTORS; OSTEOARTHRITIS; QUANTIFICATION; DISTRIBUTIONS; PROGRESSION; MODELS; VOLUME;
D O I
10.1109/TMI.2015.2415675
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Magnetic resonance imaging (MRI) has become an important imaging technique for quantifying the spatial location and magnitude/direction of longitudinal cartilage morphology changes in patients with osteoarthritis (OA). Although several analytical methods, such as subregion-based analysis, have been developed to refine and improve quantitative cartilage analyses, they can be suboptimal due to two major issues: the lack of spatial correspondence across subjects and time and the spatial heterogeneity of cartilage progression across subjects. The aim of this paper is to present a statistical method for longitudinal cartilage quantification in OA patients, while addressing these two issues. The 3D knee image data is preprocessed to establish spatial correspondence across subjects and/or time. Then, a Gaussian hidden Markov model (GHMM) is proposed to deal with the spatial heterogeneity of cartilage progression across both time and OA subjects. To estimate unknown parameters in GHMM, we employ a pseudo-likelihood function and optimize it by using an expectation-maximization (EM) algorithm. The proposed model can effectively detect diseased regions in each OA subject and present a localized analysis of longitudinal cartilage thickness within each latent subpopulation. Our GHMM integrates the strengths of two standard statistical methods including the local subregion-based analysis and the ordered value approach. We use simulation studies and the Pfizer longitudinal knee MRI dataset to evaluate the finite sample performance of GHMM in the quantification of longitudinal cartilage morphology changes. Our results indicate that GHMM significantly outperforms several standard analytical methods.
引用
收藏
页码:1914 / 1927
页数:14
相关论文
共 56 条
[1]  
[Anonymous], 2013, ARTHRITIES RELATED S
[2]  
[Anonymous], J AM STAT ASS
[3]   Intra- and inter-observer reproducibility of volume measurement of knee cartilage segmented from the OAI MR image set using a novel semi-automated segmentation method [J].
Bae, K. T. ;
Shim, H. ;
Tao, C. ;
Chang, S. ;
Wang, J. H. ;
Boudreau, R. ;
Kwoh, C. K. .
OSTEOARTHRITIS AND CARTILAGE, 2009, 17 (12) :1589-1597
[4]  
BESAG J, 1974, J ROY STAT SOC B MET, V36, P192
[5]  
BESAG J, 1986, J R STAT SOC B, V48, P259
[6]   Risk factors for progressive cartilage loss in the knee [J].
Biswal, S ;
Hastie, T ;
Andriacchi, TP ;
Bergman, GA ;
Dillingham, MF ;
Lang, P .
ARTHRITIS AND RHEUMATISM, 2002, 46 (11) :2884-2892
[7]   Magnetic resonance image segmentation using semi-automated software for quantification of knee articular cartilage-initial evaluation of a technique for paired scans [J].
Brem, M. H. ;
Lang, P. K. ;
Neumann, G. ;
Schlechtweg, P. M. ;
Schneider, E. ;
Jackson, R. ;
Yu, J. ;
Eaton, C. B. ;
Hennig, F. F. ;
Yoshioka, H. ;
Pappas, G. ;
Duryea, J. .
SKELETAL RADIOLOGY, 2009, 38 (05) :505-511
[8]   Femorotibial Cartilage Thickness Change Distributions for Subjects without Signs, Symptoms, or Risk Factors of Knee Osteoarthritis [J].
Buck, Robert J. ;
Dreher, Don ;
Eckstein, Felix .
CARTILAGE, 2012, 3 (04) :305-313
[9]   Does the Use of Ordered Values of Subregional Change in Cartilage Thickness Improve the Detection of Disease Progression in Longitudinal Studies of Osteoarthritis? [J].
Buck, Robert J. ;
Wyman, Bradley T. ;
Le Graverand, Marie-Pierre Hellio ;
Hudelmaier, Martin ;
Wirth, Wolfgang ;
Eckstein, Felix .
ARTHRITIS & RHEUMATISM-ARTHRITIS CARE & RESEARCH, 2009, 61 (07) :917-924
[10]   Subregional effects of meniscal tears on cartilage loss over 2 years in knee osteoarthritis [J].
Chang, Alison ;
Moisio, Kirsten ;
Chmiel, Joan S. ;
Eckstein, Felix ;
Guermazi, Ali ;
Almagor, Orit ;
Cahue, September ;
Wirth, Wolfgang ;
Prasad, Pottumarthi ;
Sharma, Leena .
ANNALS OF THE RHEUMATIC DISEASES, 2011, 70 (01) :74-79