Molecule design of effective C2H4/C2H6 separation membranes: From 2D nanoporous graphene to 3D AHT zeolite

被引:13
作者
Xu, Yinxiang [1 ,2 ,3 ]
Xu, Junbo [3 ]
Yang, Chao [3 ,4 ]
机构
[1] Beihang Univ, Sch Space & Environm, Beijing 100191, Peoples R China
[2] Sichuan Univ Sci & Engn, Coll Mech Engn, Zigong 643000, Sichuan, Peoples R China
[3] Chinese Acad Sci, Inst Proc Engn, CAS Key Lab Green Proc & Engn, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Green Manufacture Inst, Beijing 100190, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
AHT zeolite membrane; C2H4/C2H6; separation; Molecular sieving; Molecular dynamics simulation; IONIC LIQUID-MEMBRANES; OLEFIN/PARAFFIN SEPARATION; FACILITATED TRANSPORT; ETHYLENE/ETHANE SEPARATION; POLYMER MEMBRANES; CARBON MEMBRANES; GAS SEPARATION; PERFORMANCE; SELECTIVITY; MIXTURES;
D O I
10.1016/j.memsci.2020.118033
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
It is of great importance and challenge to explore effective membranes with optimal pore structures from diverse porous materials to replace energy-intensive cryogenic distillation processes for C2H4/C2H6 separation because of their similar physical properties. In this work, we proposed a strategy to screen the ideal 3D zeolite membrane by matching the zeolite structure to the designed 2D nanopore. Here, we found out the ideal AHT zeolite membrane with elliptical windows similar to the designed graphene-embedded 22-crown-8 ether pore with ultrahigh selectivity of C2H4/C2H6 mixtures via molecular dynamics simulations. The results demonstrate that the AHT zeolite membrane only allows the transport of C2H4 based on molecular size exclusion, which is validated by density functional theory calculations. Furthermore, the permeation performance studies of pure components demonstrate that the AHT zeolite membrane exhibits a C2H4/C(2)H(6 )selectivity of around 100 and a C2H4 permeability of 958 Barrer, superior to most of reported membrane materials.
引用
收藏
页数:8
相关论文
共 56 条
[1]  
Ang E.Y.M., 2019, J MEMBRANE SCI
[2]   A review on olefin/paraffin separation using reversible chemical complexation technology [J].
Azhin, Maryam ;
Kaghazchi, Tahereh ;
Rahmani, Mohammad .
JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2008, 14 (05) :622-638
[3]  
Bacsik Z., 2016, APPL ENERGY, V162
[4]   Ethene/ethane separation by the MOF membrane ZIF-8: Molecular correlation of permeation, adsorption, diffusion [J].
Bux, Helge ;
Chmelik, Christian ;
Krishna, Rajamani ;
Caro, Juergen .
JOURNAL OF MEMBRANE SCIENCE, 2011, 369 (1-2) :284-289
[5]   A metal-organic framework-based splitter for separating propylene from propane [J].
Cadiau, A. ;
Adil, K. ;
Bhatt, P. M. ;
Belmabkhout, Y. ;
Eddaoudi, M. .
SCIENCE, 2016, 353 (6295) :137-140
[6]   The path towards sustainable energy [J].
Chu, Steven ;
Cui, Yi ;
Liu, Nian .
NATURE MATERIALS, 2017, 16 (01) :16-22
[7]   Crude oil to chemicals: light olefins from crude oil [J].
Corma, A. ;
Corresa, E. ;
Mathieu, Y. ;
Sauvanaud, L. ;
Al-Bogami, S. ;
Al-Ghrami, M. S. ;
Bourane, A. .
CATALYSIS SCIENCE & TECHNOLOGY, 2017, 7 (01) :12-46
[8]   AN ALL-ELECTRON NUMERICAL-METHOD FOR SOLVING THE LOCAL DENSITY FUNCTIONAL FOR POLYATOMIC-MOLECULES [J].
DELLEY, B .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (01) :508-517
[9]   Supported ionic liquid membranes with high carrier efficiency via strong hydrogen-bond basicity for the sustainable and effective olefin/paraffin separation [J].
Dou, Haozhen ;
Jiang, Bin ;
Xu, Mi ;
Zhou, Junhan ;
Sun, Yongli ;
Zhang, Luhong .
CHEMICAL ENGINEERING SCIENCE, 2019, 193 :27-37
[10]   Toward a database of hypothetical zeolite structures [J].
Earl, David J. ;
Deem, Michael W. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2006, 45 (16) :5449-5454