GENERALIZED HYBRID MAPPINGS IN HILBERT SPACES AND BANACH SPACES

被引:16
作者
Hsu, Ming-Hsiu [2 ]
Takahashi, Wataru [2 ,3 ]
Yao, Jen-Chih [1 ]
机构
[1] Kaohsiung Med Univ, Ctr Gen Educ, Kaohsiung 80707, Taiwan
[2] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan
[3] Tokyo Inst Technol, Dept Math & Comp Sci, Tokyo 1528552, Japan
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2012年 / 16卷 / 01期
基金
日本学术振兴会;
关键词
Hilbert space; Banach space; Nonexpansive mapping; Nonspreading mapping; Hybrid mapping; Fixed point; FIXED-POINT THEOREMS; MAXIMAL MONOTONE-OPERATORS; WEAK-CONVERGENCE THEOREMS; NONEXPANSIVE-MAPPINGS; NONLINEAR MAPPINGS;
D O I
10.11650/twjm/1500406532
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we deal with a broad class of nonlinear mappings in a Hilbert space and a Banach space called generalized hybrid which contains the classes of nonexpansive mappings, nonspreading mappings, and hybrid mappings. Then, we prove fixed point theorems for these nonlinear mappings in a Hilbert space and a Banach space. Furthermore, we obtain duality theorems for nonlinear mappings in a Banach space.
引用
收藏
页码:129 / 149
页数:21
相关论文
共 34 条
[1]  
Alber YI, 1996, LECT NOTES PURE APPL, P15
[2]  
Aoyama K, 2010, J NONLINEAR CONVEX A, V11, P335
[3]  
BAILLON JB, 1975, CR ACAD SCI A MATH, V280, P1511
[4]  
Blum E., 1994, Math. Stud., V63, P127
[5]   CONVERGENCE THEOREMS FOR SEQUENCES OF NONLINEAR OPERATORS IN BANACH SPACES [J].
BROWDER, FE .
MATHEMATISCHE ZEITSCHRIFT, 1967, 100 (03) :201-&
[6]  
Bruck R. E., 1977, Houston J. Math., V3, P459
[7]   NONEXPANSIVE PROJECTIONS ON SUBSETS OF BANACH SPACES [J].
BRUCK, RE .
PACIFIC JOURNAL OF MATHEMATICS, 1973, 47 (02) :341-355
[8]  
Combettes PL, 2005, J NONLINEAR CONVEX A, V6, P117
[9]  
Goebel K., 1990, Topics in Metric Fixed Point Theory
[10]  
Hojo M., 2011, FIXED POINT IN PRESS, V12