Regularity of random attractors for stochastic reaction-diffusion equations on unbounded domains

被引:7
作者
Bao Quoc Tang [1 ,2 ]
机构
[1] Graz Univ, Inst Math & Sci Comp, A-8010 Graz, Austria
[2] Univ Sci & Technol, Sch Appl Math & Informat, Hanoi, Vietnam
基金
奥地利科学基金会;
关键词
Random dynamical systems; random attractors; stochastic reaction-diffusion equations; unbounded domains; tail estimates; PULLBACK ATTRACTORS; H-1-RANDOM ATTRACTORS; EXISTENCE;
D O I
10.1142/S0219493716500064
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The existence of a unique random attractors in H-1(R-n) for a stochastic reaction-diffusion equation with time-dependent external forces is proved. Due to the presence of both random and non-autonomous deterministic terms, we use a new theory of random attractors which is introduced in [B. Wang, J. Differential Equations 253 (2012) 1544-1583] instead of the usual one. The asymptotic compactness of solutions in H-1(R-n) is established by combining "tail estimate" technique and some new estimates on solutions. This work improves some recent results about the regularity of random attractors for stochastic reaction-diffusion equations.
引用
收藏
页数:29
相关论文
共 32 条
[1]  
Anh C., 2012, ELECTRON J DIFFER EQ, V2012, P1
[2]  
Arnold L., 1998, Random Dynamical Systems
[3]   REGULARITY OF PULLBACK RANDOM ATTRACTORS FOR STOCHASTIC FITZHUGH-NAGUMO SYSTEM ON UNBOUNDED DOMAINS [J].
Bao Quoc Tang .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (01) :441-466
[4]  
Bao T., 2012, ELECTRON J DIFFER EQ, V2012, P1
[5]   Random attractors for stochastic reaction-diffusion equations on unbounded domains [J].
Bates, Peter W. ;
Lu, Kening ;
Wang, Bixiang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (02) :845-869
[6]   Attractors for Stochastic lattice dynamical systems [J].
Bates, PW ;
Lisei, H ;
Lu, KN .
STOCHASTICS AND DYNAMICS, 2006, 6 (01) :1-21
[7]   Random attractors [J].
Crauel H. ;
Debussche A. ;
Flandoli F. .
Journal of Dynamics and Differential Equations, 1997, 9 (2) :307-341
[8]   ATTRACTORS FOR RANDOM DYNAMICAL-SYSTEMS [J].
CRAUEL, H ;
FLANDOLI, F .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 100 (03) :365-393
[9]   REGULARITY AND FRACTAL DIMENSION OF PULLBACK ATTRACTORS FOR A NON-AUTONOMOUS SEMILINEAR DEGENERATE PARABOLIC EQUATION [J].
Cung The Anh ;
Tang Quoc Bao ;
Le Thi Thuy .
GLASGOW MATHEMATICAL JOURNAL, 2013, 55 (02) :431-448
[10]  
Flandoli F., 1996, STOCH STOCH REP, V59, P21