Nonparametric inference on jump regression surface

被引:4
作者
Jose, CT [1 ]
Ismail, B
机构
[1] Cent Plantat Crops Res Inst, Reg Stn, Vittal 574243, Karnataka, India
[2] Mangalore Univ, Dept Stat, Mangalore 574199, India
关键词
change point; discontinuity; kernel estimator; local polynomial regression; nonparametric regression;
D O I
10.1080/10485250108832878
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Estimators for jump location curve and jump size function of a two dimensional jump regression function (jump regression surface) are proposed. The estimators are obtained by fitting kernel weighted least squares regression based on the observations in the four quadrants of a neighborhood of a given point. The proposed procedure can be used in the case of jump in the regression surface and/or in its slope (jump in the partial derivatives). The limiting distributions and the asymptotic properties of the estimators are investigated. The procedure is illustrated through a simulation study.
引用
收藏
页码:791 / 813
页数:23
相关论文
共 20 条
[1]  
Bhattacharya PK, 1994, INST MATH S, V23, P28, DOI 10.1214/lnms/1215463112
[2]   EDGE-PRESERVING AND PEAK-PRESERVING SMOOTHING [J].
HALL, P ;
TITTERINGTON, DM .
TECHNOMETRICS, 1992, 34 (04) :429-440
[3]   INFERENCE ABOUT INTERSECTION IN 2-PHASE REGRESSION [J].
HINKLEY, DV .
BIOMETRIKA, 1969, 56 (03) :495-&
[4]   INFERENCE IN 2-PHASE REGRESSION [J].
HINKLEY, DV .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1971, 66 (336) :736-743
[5]   Estimation of jump points in nonparametric regression through residual analysis [J].
Jose, CT ;
Ismail, B .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1997, 26 (11) :2583-2607
[6]   Change points in nonparametric regression functions [J].
Jose, CT ;
Ismail, B .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1999, 28 (08) :1883-1902
[7]  
Loader CR, 1996, ANN STAT, V24, P1667
[8]   SMOOTHING WITH SPLIT LINEAR FITS [J].
MCDONALD, JA ;
OWEN, AB .
TECHNOMETRICS, 1986, 28 (03) :195-208
[9]   CHANGE-POINTS IN NONPARAMETRIC REGRESSION-ANALYSIS [J].
MULLER, HG .
ANNALS OF STATISTICS, 1992, 20 (02) :737-761
[10]   MAXIMIN ESTIMATION OF MULTIDIMENSIONAL BOUNDARIES [J].
MULLER, HG ;
SONG, KS .
JOURNAL OF MULTIVARIATE ANALYSIS, 1994, 50 (02) :265-281