Support Vector Regression for Censored Data (SVRc): A Novel Tool for Survival Analysis

被引:94
作者
Khan, Faisal M.
Zubek, Valentina Bayer
机构
来源
ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS | 2008年
关键词
D O I
10.1109/ICDM.2008.50
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A crucial challenge in predictive modeling for survival analysis is managing censored observations in the data. The Cox proportional hazards model is the standard tool for the analysis of continuous censored survival data. We propose a novel machine learning algorithm, Support Vector Regression for Censored Data (SVRe) for improved analysis of medical survival data. SVRc leverages the high-dimensional capabilities of traditional SVR while adapting it for use with censored data through a modified asymmetric loss/penalty function which allows censored (left and right censored) data to be processed We applied the new algorithm to predict the recurrence and disease progression of prostate cancer, breast cancer and lung cancer. Compared with the traditional Cox model, SVRc achieves significant improvement in overall accuracy as well as in the ability to identify high-risk and low-risk patient populations.
引用
收藏
页码:863 / 868
页数:6
相关论文
共 17 条
[1]  
[Anonymous], J ROYAL STAT SOC
[2]   Improved prediction of prostate cancer recurrence through systems pathology [J].
Cordon-Cardo, Carlos ;
Kotsianti, Angeliki ;
Verbel, David A. ;
Teverovskiy, Mikhail ;
Capodieci, Paola ;
Hamann, Stefan ;
Jeffers, Yusuf ;
Clayton, Mark ;
Elkhettabi, Faysal ;
Khan, Faisal M. ;
Sapir, Marina ;
Bayer-Zubek, Valentina ;
Vengrenyuk, Yevgen ;
Fogarsi, Stephen ;
Saidi, Olivier ;
Reuter, Victor E. ;
Scher, Howard I. ;
Kattan, Michael W. ;
Bianco, Fernando J., Jr. ;
Wheeler, Thomas M. ;
Ayala, Gustavo E. ;
Scardino, Peter T. ;
Donovan, Michael J. .
JOURNAL OF CLINICAL INVESTIGATION, 2007, 117 (07) :1876-1883
[3]  
DESILVA CJS, 1994, AUST COMPUT J, V26, P78
[4]  
DONOVAN M, 2007, ASCO MAY
[5]   Systems pathology approach for the prediction of prostate cancer progression after radical prostatectomy [J].
Donovan, Michael J. ;
Hamann, Stefan ;
Clayton, Mark ;
Khan, Faisal M. ;
Sapir, Marina ;
Bayer-Zubek, Valentina ;
Fernandez, Gerardo ;
Mesa-Tejada, Ricardo ;
Teverovskiy, Mikhail ;
Reuter, Victor E. ;
Scardino, Peter T. ;
Cordon-Cardo, Carlos .
JOURNAL OF CLINICAL ONCOLOGY, 2008, 26 (24) :3923-3929
[6]   Sparse kernel methods for high-dimensional survival data [J].
Evers, Ludger ;
Messow, Claudia-Martina .
BIOINFORMATICS, 2008, 24 (14) :1632-1638
[7]  
GORDON L, 1985, CANCER TREAT REP, V69, P1065
[8]  
Harrell FE., 2001, REGRESSION MODELING, DOI DOI 10.1007/978-3-319-19425-7
[9]   Experiments to determine whether recursive partitioning (CART) or an artificial neural network overcomes theoretical limitations of cox proportional hazards regression [J].
Kattan, MW ;
Hess, KR ;
Beck, JR .
COMPUTERS AND BIOMEDICAL RESEARCH, 1998, 31 (05) :363-373
[10]  
MANGASARIAN O, 1994, MPTR9410 U WISC