Spatio-Temporal Learning from Longitudinal Data for Multiple Sclerosis Lesion Segmentation

被引:5
作者
Denner, Stefan [1 ]
Khakzar, Ashkan [1 ]
Sajid, Moiz [1 ]
Saleh, Mahdi [1 ]
Spiclin, Ziga [3 ]
Kim, Seong Tae [1 ]
Navab, Nassir [1 ,2 ]
机构
[1] Tech Univ Munich, Comp Aided Med Procedures, Munich, Germany
[2] Johns Hopkins Univ, Comp Aided Med Procedures, Baltimore, MD USA
[3] Univ Ljubljana, Fac Elect Engn, Ljubljana, Slovenia
来源
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT I | 2021年 / 12658卷
关键词
Longitudinal analysis; MS lesion segmentation; CONVOLUTIONAL NEURAL-NETWORK;
D O I
10.1007/978-3-030-72084-1_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Segmentation of Multiple Sclerosis (MS) lesions in longitudinal brain MR scans is performed for monitoring the progression of MS lesions. We hypothesize that the spatio-temporal cues in longitudinal data can aid the segmentation algorithm. Therefore, we propose a multi-task learning approach by defining an auxiliary self-supervised task of deformable registration between two time-points to guide the neural network toward learning from spatio-temporal changes. We show the efficacy of our method on a clinical dataset comprised of 70 patients with one follow-up study for each patient. Our results show that spatio-temporal information in longitudinal data is a beneficial cue for improving segmentation. We improve the result of current state-of-the-art by 2.6% in terms of overall score (p < 0.05). Code is publicly available (https://github.com/StefanDenn3r/Spatio-temporal-MS-Lesion-Segmentation).
引用
收藏
页码:111 / 121
页数:11
相关论文
共 29 条
[1]   Automated Segmentation of Multiple Sclerosis Lesions Using Multi-dimensional Gated Recurrent Units [J].
Andermatt, Simon ;
Pezold, Simon ;
Cattin, Philippe C. .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2017, 2018, 10670 :31-42
[2]  
[Anonymous], 2015, P 2015 LONGITUDINAL
[3]  
[Anonymous], 2008, Midas J
[4]   Multi-branch convolutional neural network for multiple sclerosis lesion segmentation [J].
Aslani, Shahab ;
Dayan, Michael ;
Storelli, Loredana ;
Filippi, Massimo ;
Murino, Vittorio ;
Rocca, Maria A. ;
Sona, Diego .
NEUROIMAGE, 2019, 196 :1-15
[5]   VoxelMorph: A Learning Framework for Deformable Medical Image Registration [J].
Balakrishnan, Guha ;
Zhao, Amy ;
Sabuncu, Mert R. ;
Guttag, John ;
Dalca, Adrian, V .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (08) :1788-1800
[6]   An Unsupervised Learning Model for Deformable Medical Image Registration [J].
Balakrishnan, Guha ;
Zhao, Amy ;
Sabuncu, Mert R. ;
Guttag, John ;
Dalca, Adrian V. .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :9252-9260
[7]   Longitudinal Multiple Sclerosis Lesion Segmentation Using Multi-view Convolutional Neural Networks [J].
Birenbaum, Ariel ;
Greenspan, Hayit .
DEEP LEARNING AND DATA LABELING FOR MEDICAL APPLICATIONS, 2016, 10008 :58-67
[8]   Longitudinal multiple sclerosis lesion segmentation: Resource and challenge [J].
Carass, Aaron ;
Roy, Snehashis ;
Jog, Amod ;
Cuzzocreo, Jennifer L. ;
Magrath, Elizabeth ;
Gherman, Adrian ;
Button, Julia ;
Nguyen, James ;
Prados, Ferran ;
Sudre, Carole H. ;
Cardoso, Manuel Jorge ;
Cawley, Niamh ;
Ciccarelli, Olga ;
Wheeler-Kingshott, Claudia A. M. ;
Ourselin, Sebastien ;
Catanese, Laurence ;
Deshpande, Hrishikesh ;
Maurel, Pierre ;
Commowick, Olivier ;
Barillot, Christian ;
Tomas-Fernandez, Xavier ;
Warfield, Simon K. ;
Vaidya, Suthirth ;
Chunduru, Abhijith ;
Muthuganapathy, Ramanathan ;
Krishnamurthi, Ganapathy ;
Jesson, Andrew ;
Arbel, Tal ;
Maier, Oskar ;
Handeles, Heinz ;
Iheme, Leonardo O. ;
Unay, Devrim ;
Jain, Saurabh ;
Sima, Diana M. ;
Smeets, Dirk ;
Ghafoorian, Mohsen ;
Platel, Bram ;
Birenbaum, Ariel ;
Greenspan, Hayit ;
Bazin, Pierre-Louis ;
Calabresi, Peter A. ;
Crainiceanu, Ciprian M. ;
Ellingsen, Lotta M. ;
Reich, Daniel S. ;
Prince, Jerry L. ;
Pham, Dzung L. .
NEUROIMAGE, 2017, 148 :77-102
[9]   Geodesic Information Flows: Spatially-Variant Graphs and Their Application to Segmentation and Fusion [J].
Cardoso, M. Jorge ;
Modat, Marc ;
Wolz, Robin ;
Melbourne, Andrew ;
Cash, David ;
Rueckert, Daniel ;
Ourselin, Sebastien .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (09) :1976-1988
[10]  
Chen Z, 2018, PR MACH LEARN RES, V80