11C-PIB PET Image Analysis for Alzheimer's Diagnosis Using Weighted Voting Ensembles

被引:0
作者
Wu, Wenjun [1 ,2 ]
Venugopalan, Janani [1 ,2 ]
Wang, May D. [1 ,2 ]
机构
[1] Georgia Inst Technol, Wallace H Countler Dept Biomed Engn, Atlanta, GA 30332 USA
[2] Emory Univ, Atlanta, GA 30332 USA
来源
2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC) | 2017年
基金
美国国家卫生研究院;
关键词
DISEASE; BIOMARKERS;
D O I
暂无
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Alzheimer's Disease (AD) is one of the leading causes of death and dementia worldwide. Early diagnosis confers many benefits, including improved care and access to effective treatment. However, it is still a medical challenge due to the lack of an efficient and inexpensive way to assess cognitive function [1]. Although research on data from Neuroimaging and Brain Initiative and the advancement in data analytics has greatly enhanced our understanding of the underlying disease process, there is still a lack of complete knowledge regarding the indicative biomarkers of Alzheimer's Disease. Recently, computer aided diagnosis of mild cognitive impairment and AD with functional brain images using machine learning methods has become popular. However, the prediction accuracy remains unoptimistic, with prediction accuracy ranging from 60% to 88% [2,3,6]. Among them, support vector machine is the most popular classifier. However, because of the relatively small sample size and the amount of noise in functional brain imaging data, a single classifier cannot achieve high classification performance. Instead of using a global classifier, in this work, we aim to improve AD prediction accuracy by combining three different classifiers using weighted and unweighted schemes. We rank image-derived features according to their importance to the classification performance and show that the top ranked features are localized in the brain areas which have been found to associate with the progression of AD. We test the proposed approach on 11C-PIB PET scans from The Alzheimer's Disease Neuroimaging Initiative (ADNI) database and demonstrated that the weighted ensemble models outperformed individual models of K-Nearest Neighbors, Random Forests, Neural Nets with overall cross validation accuracy of 86.1% +/- 8.34%, specificity of 90.6% +/- 12.9% and test accuracy of 80.9% and specificity 85.76% in classification of AD, mild cognitive impairment and healthy elder adults.
引用
收藏
页码:3914 / 3917
页数:4
相关论文
共 16 条
  • [1] Alzheimer's Association, 2016, ALZHEIMERS DEMENTI S, V12
  • [2] 3D PIB and CSF biomarker associations with hippocampal atrophy in ADNI subjects
    Apostolova, Liana G.
    Hwang, Kristy S.
    Andrawis, John P.
    Green, Amity E.
    Babakchanian, Sona
    Morra, Jonathan H.
    Cummings, Jeffrey L.
    Toga, Arthur W.
    Trojanowski, John Q.
    Shaw, Leslie M.
    Jack, Clifford R., Jr.
    Petersen, Ronald C.
    Aisen, Paul S.
    Jagust, William J.
    Koeppe, Robert A.
    Mathis, Chester A.
    Weiner, Michael W.
    Thompson, Paul M.
    [J]. NEUROBIOLOGY OF AGING, 2010, 31 (08) : 1284 - 1303
  • [3] Regional variability of imaging biomarkers in autosomal dominant Alzheimer's disease
    Benzinger, Tammie L. S.
    Blazey, Tyler
    Jack, Clifford R., Jr.
    Koeppe, Robert A.
    Su, Yi
    Xiong, Chengjie
    Raichle, Marcus E.
    Snyder, Abraham Z.
    Ances, Beau M.
    Bateman, Randall J.
    Cairns, Nigel J.
    Fagan, Anne M.
    Goate, Alison
    Marcus, Daniel S.
    Aisen, Paul S.
    Christensen, Jon J.
    Ercole, Lindsay
    Hornbeck, Russ C.
    Farrar, Angela M.
    Aldea, Patricia
    Jasielec, Mateusz S.
    Owen, Christopher J.
    Xie, Xianyun
    Mayeux, Richard
    Brickman, Adam
    McDade, Eric
    Klunk, William
    Mathis, Chester A.
    Ringman, John
    Thompson, Paul M.
    Ghetti, Bernardino
    Saykin, Andrew J.
    Sperling, Reisa A.
    Johnson, Keith A.
    Salloway, Stephen
    Correia, Stephen
    Schofield, Peter R.
    Masters, Colin L.
    Rowe, Christopher
    Villemagne, Victor L.
    Martins, Ralph
    Ourselin, Sebastien
    Rossor, Martin N.
    Fox, Nick C.
    Cash, David M.
    Weiner, Michael W.
    Holtzman, David M.
    Buckles, Virginia D.
    Moulder, Krista
    Morris, John C.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (47) : E4502 - E4509
  • [4] Cabral C, 2013, IEEE ENG MED BIO, P2477, DOI 10.1109/EMBC.2013.6610042
  • [5] Structural imaging biomarkers of Alzheimer's disease: predicting disease progression
    Eskildsen, Simon F.
    Coupe, Pierrick
    Fonov, Vladimir S.
    Pruessner, Jens C.
    Collins, D. Louis
    [J]. NEUROBIOLOGY OF AGING, 2015, 36 : S23 - S31
  • [6] Farid K., 2014, ALZHEIMERS DEMENT, V10, pP16
  • [7] Unbiased average age-appropriate atlases for pediatric studies
    Fonov, Vladimir
    Evans, Alan C.
    Botteron, Kelly
    Almli, C. Robert
    McKinstry, Robert C.
    Collins, D. Louis
    [J]. NEUROIMAGE, 2011, 54 (01) : 313 - 327
  • [8] STATISTICAL AND STRUCTURAL APPROACHES TO TEXTURE
    HARALICK, RM
    [J]. PROCEEDINGS OF THE IEEE, 1979, 67 (05) : 786 - 804
  • [9] 18F-FDG PET imaging analysis for computer aided Alzheimer's diagnosis
    Illan, I. A.
    Gorriz, J. M.
    Ramirez, J.
    Salas-Gonzalez, D.
    Lopez, M. M.
    Segovia, F.
    Chaves, R.
    Gomez-Rio, M.
    Puntonet, C. G.
    [J]. INFORMATION SCIENCES, 2011, 181 (04) : 903 - 916
  • [10] FSL
    Jenkinson, Mark
    Beckmann, Christian F.
    Behrens, Timothy Ej.
    Woolrich, Mark W.
    Smith, Stephen M.
    [J]. NEUROIMAGE, 2012, 62 (02) : 782 - 790