Airborne electromagnetic data denoising based on dictionary learning

被引:15
作者
Xue, Shu-yang [1 ]
Yin, Chang-chun [1 ]
Su, Yang [1 ]
Liu, Yun-he [1 ]
Wang, Yong [2 ]
Liu, Cai-hua [3 ]
Xiong, Bin [4 ]
Sun, Huai-feng [5 ]
机构
[1] Jilin Univ, Coll Geoexplorat Sci & Technol, Changchun 130026, Peoples R China
[2] Jilin Univ, Construct Engn Coll, Changchun 130026, Peoples R China
[3] Sino Shaanxi Nucl Ind Grp 214 Brigade Co Ltd, Xian 710100, Peoples R China
[4] Guilin Univ Technol, Coll Earth Sci, Guilin 541006, Peoples R China
[5] Shandong Univ, Geotech & Struct Engn Res Ctr, Jinan 250061, Peoples R China
基金
中国国家自然科学基金;
关键词
Time-domain AEM; data processing; denoising; dictionary learning; sparse representation; NOISE; SPARSE;
D O I
10.1007/s11770-020-0810-1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Time-domain airborne electromagnetic (AEM) data are frequently subject to interference from various types of noise, which can reduce the data quality and affect data inversion and interpretation. Traditional denoising methods primarily deal with data directly, without analyzing the data in detail; thus, the results are not always satisfactory. In this paper, we propose a method based on dictionary learning for EM data denoising. This method uses dictionary learning to perform feature analysis and to extract and reconstruct the true signal. In the process of dictionary learning, the random noise is filtered out as residuals. To verily the effectiveness of this dictionary learning approach for denoising, we use a fixed overcomplete discrete cosine transform (ODCT) dictionary algorithm, the method-of-optimal-directions (MOD) dictionary learning algorithm, and the K-singular value decomposition (K-SVD) dictionary learning algorithm to denoise decay curves at single points and to denoise profile data for different time channels in time-domain AEM. The results show obvious differences among the three dictionaries for denoising AEM data, with the K-SVD dictionary achieving the best performance.
引用
收藏
页码:306 / 313
页数:8
相关论文
共 28 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]   Simultaneous dictionary learning and denoising for seismic data [J].
Beckouche, Simon ;
Ma, Jianwei .
GEOPHYSICS, 2014, 79 (03) :A27-A31
[3]  
Buselli G, 1998, Exploration Geophysics, V29, P71, DOI DOI 10.1071/EG998071
[4]   RETRACTED: Fast dictionary learning for noise attenuation of multidimensional seismic data (Publication with Expression of Concern. See vol. 221, pg. 2053, 2020) (Retracted article. See vol. 222, pg. 1896, 2020) [J].
Chen, Yangkang .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2017, 209 (01) :21-31
[5]   Image denoising via sparse and redundant representations over learned dictionaries [J].
Elad, Michael ;
Aharon, Michal .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (12) :3736-3745
[6]  
Engan K, 1999, INT CONF ACOUST SPEE, P2443, DOI 10.1109/ICASSP.1999.760624
[7]   A TRANSFORMATION FOR ORDERING MULTISPECTRAL DATA IN TERMS OF IMAGE QUALITY WITH IMPLICATIONS FOR NOISE REMOVAL [J].
GREEN, AA ;
BERMAN, M ;
SWITZER, P ;
CRAIG, MD .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1988, 26 (01) :65-74
[8]   Improved shift-invariant sparse coding for noise attenuation of magnetotelluric data [J].
Li, Guang ;
Liu, Xiaoqiong ;
Tang, Jingtian ;
Deng, Juzhi ;
Hu, Shuanggui ;
Zhou, Cong ;
Chen, Chaojian ;
Tang, Wenwu .
EARTH PLANETS AND SPACE, 2020, 72 (01)
[9]   Seismic data restoration via data-driven tight frame [J].
Liang, Jingwei ;
Ma, Jianwei ;
Zhang, Xiaoqun .
GEOPHYSICS, 2014, 79 (03) :V65-V74
[10]   Auxiliary drying to prevent pattern collapse in high aspect ratio nanostructures [J].
Liu, Gang ;
Zhou, Jie ;
Xiong, Ying ;
Zhang, Xiaobo ;
Tian, Yangchao .
NANOTECHNOLOGY, 2011, 22 (30)