A variational approach to the modulational-oscillatory instability of Bose-Einstein condensates in an optical potential

被引:15
作者
Sabari, S. [1 ]
Wamba, E. [2 ]
Porsezian, K. [1 ]
Mohamadou, A. [3 ,4 ]
Kofane, T. C. [2 ]
机构
[1] Pondicherry Univ, Dept Phys, Pondicherry 605014, India
[2] Univ Yaounde, Fac Sci, Dept Phys, Lab Mech, Yaounde, Cameroon
[3] Univ Douala, Fac Sci, Dept Phys, Condensed Matter Lab, Douala, Cameroon
[4] Abdus Salam Int Ctr Theoret Phys, I-34014 Trieste, Italy
关键词
Variational approach; Gross-Pitaevskii equation; Optical potential; Modulational instability; Oscillatory instability; NONLINEAR SCHRODINGER-EQUATION; GAS; SUPERFLUID; DYNAMICS; SOLITONS; LATTICE;
D O I
10.1016/j.physleta.2013.07.005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the time-dependent variational approach to demonstrate how the modulational and oscillatory instabilities can be generated in Bose-Einstein condensates (BECs) trapped in a periodic optical lattice with weak driving harmonic potential. We derive and analyze the ordinary differential equations for the time evolution of the amplitude and phase of the modulational perturbation, and obtain the instability condition of the condensates through the effective potential. The effect of the optical potential on the dynamics of the BECs is shown. We perform direct numerical simulations to support our theoretical findings, and good agreement is found. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2408 / 2415
页数:8
相关论文
共 72 条
[1]  
Abdullaev F.Kh., 2005, PHYS REV A, V72
[2]   Nonlinear excitations in arrays of Bose-Einstein condensates [J].
Abdullaev, FK ;
Baizakov, BB ;
Darmanyan, SA ;
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW A, 2001, 64 (04) :436061-4360610
[3]  
Agrawal G. P., 2001, NONLINEAR FIBER OPTI, V3rd
[4]   Geometric resonances in Bose-Einstein condensates with two- and three-body interactions [J].
Al-Jibbouri, Hamid ;
Vidanovic, Ivana ;
Balaz, Antun ;
Pelster, Axel .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2013, 46 (06)
[5]   Dynamics of matter-wave solitons in harmonic traps with flashing optical lattices [J].
Alexander, T. J. ;
Heenan, K. ;
Salerno, M. ;
Ostrovskaya, E. A. .
PHYSICAL REVIEW A, 2012, 85 (06)
[6]   Wannier functions analysis of the nonlinear Schrodinger equation with a periodic potential [J].
Alfimov, GL ;
Kevrekidis, PG ;
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW E, 2002, 66 (04) :6
[7]   Matter solitons in Bose-Einstein condensates with optical lattices [J].
Alfimov, GL ;
Konotop, VV ;
Salerno, M .
EUROPHYSICS LETTERS, 2002, 58 (01) :7-13
[8]   Macroscopic quantum interference from atomic tunnel arrays [J].
Anderson, BP ;
Kasevich, MA .
SCIENCE, 1998, 282 (5394) :1686-1689
[9]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[10]   Instability and stratification of a two-component Bose-Einstein condensate in a trapped ultracold gas [J].
Bashkin, EP ;
Vagov, AV .
PHYSICAL REVIEW B, 1997, 56 (10) :6207-6212