Extensions of Finite Quantum Groups by Finite Groups

被引:4
作者
Andruskiewitsch, N. [1 ]
Garcia, G. A. [1 ]
机构
[1] Univ Nacl Cordoba, CONICET, FaMAF CIEM, RA-5000 Cordoba, Argentina
关键词
SIMPLE LIE-GROUPS; HOPF-ALGEBRAS; ROOTS;
D O I
10.1007/s00031-008-9039-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a necessary and sufficient condition for two Hopf algebras presented as central extensions to be isomorphic, in a suitable setting. We then study the question of isomorphism between the Hopf algebras constructed in [AG] as quantum subgroups of quantum groups at roots of 1. Finally, we apply the first general result to show the existence of infinitely many non-isomorphic Hopf algebras of the same dimension, presented as extensions of finite quantum groups by finite groups.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 39 条
[31]  
SCHAUENBURG P, GALOIS TYPE EXTENSIO
[32]  
Schneider H.-J., 2000, Contemp. Math., V267, P215
[33]   NORMAL BASIS AND TRANSITIVITY OF CROSSED-PRODUCTS FOR HOPF-ALGEBRAS [J].
SCHNEIDER, HJ .
JOURNAL OF ALGEBRA, 1992, 152 (02) :289-312
[34]   SOME REMARKS ON EXACT SEQUENCES OF QUANTUM GROUPS [J].
SCHNEIDER, HJ .
COMMUNICATIONS IN ALGEBRA, 1993, 21 (09) :3337-3357
[35]   Examples of extensions of PSL(2)(F-p) in simple Lie groups [J].
Serre, JP .
INVENTIONES MATHEMATICAE, 1996, 124 (1-3) :525-562
[36]   New results on the bijectivity of antipode of a Hopf algebra [J].
Skryabin, Serge .
JOURNAL OF ALGEBRA, 2006, 306 (02) :622-633
[37]  
SULLIVAN J, 1973, J ALGEBRA, V22, P546
[38]  
Sweedler M.E., 1969, MATH LECT NOTE SERIE, pvii+336
[39]   RELATIVE HOPF MODULES - EQUIVALENCES AND FREENESS CRITERIA [J].
TAKEUCHI, M .
JOURNAL OF ALGEBRA, 1979, 60 (02) :452-471