A study on the system of nonaqueous microchip electrophoresis with on-line peroxyoxalate chemiluminescence detection

被引:14
作者
Hu, Hong-Mei [1 ,2 ]
Yin, Xue-Feng [1 ]
Wang, Xiu-Zhong [1 ,3 ]
Shen, Hong [1 ]
机构
[1] Zhejiang Univ, Dept Chem, Inst Microanalyt Syst, Hangzhou 310058, Zhejiang, Peoples R China
[2] Marine Fishery Inst Zhejiang Prov, Zhejiang Prov Key Lab Mariculture & Enhancement, Zhoushan, Peoples R China
[3] Qingdao Agr Univ, Coll Chem & Pharmaceut Sci, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonaqueous microchip electrophoresis; Peroxyoxalate chemiluminescence; Polycyclic aromatic hydrocarbon; Porous polymer plug; Rhodamine; LIQUID-LIQUID-EXTRACTION; CAPILLARY-ELECTROPHORESIS; MICROFLUIDIC CHIP; RHODAMINE; 6G; HYDROGEN-PEROXIDE; ORGANIC-SOLVENTS; INJECTION; ELECTROCHROMATOGRAPHY; FLOW; CHROMATOGRAPHY;
D O I
10.1002/jssc.201200832
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This article describes a further development of our previously reported miniaturized analysis system of microchip electrophoresis with on-line chemiluminescence detection. The system, developed first time for nonaqueous microchip electrophoresis with peroxyoxalate chemiluminescence detection, consists of a suction pressure device for sample or reagent introduction, a constant voltage supplied for electrophoretic separation, an either hydrophilic or hydrophobic porous polymer plug for preventing chemiluminescence reagent flowing upstream and a spiral detection channel for enhancement of both detection sensitivity and reproducibility. Especially, by using organic solvent as BGE medium, the developed system avoided the interface problem between aqueous running buffer and low-water-content chemiluminescence solvent in previous reports. The influencing factors on chemiluminescence signal were optimized using rhodamine 6G as model molecule. The system performance was further investigated in the experiment of separation of hydrophilic rhodamine dyes and analysis of hydrophobic polycyclic aromatic hydrocarbon, providing the detection limit (S/N = 3) of 3.5 nmol/L for rhodamine 123, 6.8 nmol/L for rhodamine 6G, and 60 nmol/L for 1-aminopyrene, respectively. The experimental results showed the system offered a number of benefits, including compact structure, high sensitivity, good reproducibility, and a wide range of application prospect.
引用
收藏
页码:713 / 720
页数:8
相关论文
共 40 条
  • [1] Latest Developments in Micro Total Analysis Systems
    Arora, Arun
    Simone, Giuseppina
    Salieb-Beugelaar, Georgette B.
    Kim, Jung Tae
    Manz, Andreas
    [J]. ANALYTICAL CHEMISTRY, 2010, 82 (12) : 4830 - 4847
  • [2] Applications of capillary electrophoresis on microchip
    Dolnik, V
    Liu, SR
    [J]. JOURNAL OF SEPARATION SCIENCE, 2005, 28 (15) : 1994 - 2009
  • [3] Duran C, 2011, J AOAC INT, V94, P286
  • [4] Non-aqueous capillary electrophoresis 2005-2008
    Geiser, Laurent
    Veuthey, Jean-Luc
    [J]. ELECTROPHORESIS, 2009, 30 (01) : 36 - 49
  • [5] Chemiluminescence detection in microchip capillary electrophoresis
    Hashimoto, M
    Tsukagoshi, K
    Nakajima, R
    Kondo, K
    Arai, A
    [J]. CHEMISTRY LETTERS, 1999, (08) : 781 - 782
  • [6] Microchip capillary electrophoresis using on-line chemiluminescence detection
    Hashimoto, M
    Tsukagoshi, K
    Nakajima, R
    Kondo, K
    Arai, A
    [J]. JOURNAL OF CHROMATOGRAPHY A, 2000, 867 (1-2) : 271 - 279
  • [7] BIODEGRADATION OF 1-NITROPYRENE
    HEITKAMP, MA
    FREEMAN, JP
    MILLER, DW
    CERNIGLIA, CE
    [J]. ARCHIVES OF MICROBIOLOGY, 1991, 156 (03) : 223 - 230
  • [8] RHODAMINE 6G, INHIBITOR OF BOTH H+-EJECTIONS FROM MITOCHONDRIA ENERGIZED WITH ATP AND WITH RESPIRATORY SUBSTRATES
    HIGUTI, T
    NIIMI, S
    SAITO, R
    NAKASIMA, S
    OHE, T
    TANI, I
    YOSHIMURA, T
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA, 1980, 593 (02) : 463 - 467
  • [9] Huang G., 2010, J CHROMATOGR, V128, P1173
  • [10] Chemiluminescence detection in capillary electrophoresis
    Huang, XJ
    Fang, ZL
    [J]. ANALYTICA CHIMICA ACTA, 2000, 414 (1-2) : 1 - 14